BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32966497)

  • 1. Precise discrimination of Luminal A breast cancer subtype using an aptamer in vitro and in vivo.
    Liu M; Zhang B; Li Z; Wang Z; Li S; Liu H; Deng Y; He N
    Nanoscale; 2020 Oct; 12(38):19689-19701. PubMed ID: 32966497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Aptamer-Based Probe for Molecular Subtyping of Breast Cancer.
    Liu M; Wang Z; Tan T; Chen Z; Mou X; Yu X; Deng Y; Lu G; He N
    Theranostics; 2018; 8(20):5772-5783. PubMed ID: 30555580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of PHB2 as a Potential Biomarker of Luminal A Breast Cancer Cells Using a Cell-Specific Aptamer.
    Liu M; Wang Z; Li S; Deng Y; He N
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51593-51601. PubMed ID: 36346944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating breast cancer molecular subtypes using a DNA aptamer selected against MCF-7 cells.
    Liu M; Yang T; Chen Z; Wang Z; He N
    Biomater Sci; 2018 Nov; 6(12):3152-3159. PubMed ID: 30349922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A truncated DNA aptamer with high selectivity for estrogen receptor-positive breast cancer cells.
    Cong Y; Zhang SY; Li HM; Zhong JJ; Zhao W; Tang YJ
    Int J Biol Macromol; 2023 Dec; 252():126450. PubMed ID: 37634779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro selection of aptamer S1 against MCF-7 human breast cancer cells.
    Zhang WY; Chen HL; Chen QC
    Bioorg Med Chem Lett; 2019 Aug; 29(16):2393-2397. PubMed ID: 31196711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer.
    Camorani S; Hill BS; Collina F; Gargiulo S; Napolitano M; Cantile M; Di Bonito M; Botti G; Fedele M; Zannetti A; Cerchia L
    Theranostics; 2018; 8(18):5178-5199. PubMed ID: 30429893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PET imaging of HER2 expression with an 18F-fluoride labeled aptamer.
    Kim HJ; Park JY; Lee TS; Song IH; Cho YL; Chae JR; Kang H; Lim JH; Lee JH; Kang WJ
    PLoS One; 2019; 14(1):e0211047. PubMed ID: 30682091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of HER2-Specific Aptamer-Drug Conjugate for Breast Cancer Therapy.
    Jeong HY; Kim H; Lee M; Hong J; Lee JH; Kim J; Choi MJ; Park YS; Kim SC
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33371333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of aptamers against triple negative breast cancer cells using high throughput sequencing.
    Ferreira D; Barbosa J; Sousa DA; Silva C; Melo LDR; Avci-Adali M; Wendel HP; Rodrigues LR
    Sci Rep; 2021 Apr; 11(1):8614. PubMed ID: 33883615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies.
    Camorani S; Caliendo A; Morrone E; Agnello L; Martini M; Cantile M; Cerrone M; Zannetti A; La Deda M; Fedele M; Ricciardi L; Cerchia L
    J Exp Clin Cancer Res; 2024 Mar; 43(1):92. PubMed ID: 38532439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells.
    Bahreyni A; Yazdian-Robati R; Hashemitabar S; Ramezani M; Ramezani P; Abnous K; Taghdisi SM
    Int J Pharm; 2017 Jun; 526(1-2):391-399. PubMed ID: 28495579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Detection of HER2 by a Quasi-Targeted Proteomics Approach Using Aptamer-Peptide Probe and Liquid Chromatography-Tandem Mass Spectrometry.
    Zhou W; Xu F; Li D; Chen Y
    Clin Chem; 2018 Mar; 64(3):526-535. PubMed ID: 29142051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-EGF Receptor Aptamer-Guided Co-Delivery of Anti-Cancer siRNAs and Quantum Dots for Theranostics of Triple-Negative Breast Cancer.
    Kim MW; Jeong HY; Kang SJ; Jeong IH; Choi MJ; You YM; Im CS; Song IH; Lee TS; Lee JS; Lee A; Park YS
    Theranostics; 2019; 9(3):837-852. PubMed ID: 30809312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of DNA aptamers for extra cellular domain of human epidermal growth factor receptor 2 to detect HER2 positive carcinomas.
    Sett A; Borthakur BB; Bora U
    Clin Transl Oncol; 2017 Aug; 19(8):976-988. PubMed ID: 28224267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Clinical features and prognosis of patients with first-episode liver metastasis of different molecular subtypes of breast cancer].
    Wu SY; Tan Y; Guan YS
    Zhonghua Gan Zang Bing Za Zhi; 2016 Jun; 24(6):422-8. PubMed ID: 27465945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer.
    Powell D; Chandra S; Dodson K; Shaheen F; Wiltz K; Ireland S; Syed M; Dash S; Wiese T; Mandal T; Kundu A
    Eur J Pharm Biopharm; 2017 May; 114():108-118. PubMed ID: 28131717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells.
    Greenshields AL; Fernando W; Hoskin DW
    Exp Mol Pathol; 2019 Apr; 107():10-22. PubMed ID: 30660598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer.
    Jo H; Her J; Ban C
    Biosens Bioelectron; 2015 Sep; 71():129-136. PubMed ID: 25897882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells.
    Wu P; Gao Y; Zhang H; Cai C
    Anal Chem; 2012 Sep; 84(18):7692-9. PubMed ID: 22925013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.