BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32966529)

  • 1. Ubiquity of complex coacervation of DNA and proteins in aqueous solution.
    Kaushik P; Pandey PK; Aswal VK; Bohidar HB
    Soft Matter; 2020 Oct; 16(41):9525-9533. PubMed ID: 32966529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.
    Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2012 Dec; 116(51):14805-16. PubMed ID: 23194173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensation, complex coacervation, and overcharging during DNA-gelatin interactions in aqueous solutions.
    Arfin N; Bohidar HB
    J Phys Chem B; 2012 Nov; 116(44):13192-9. PubMed ID: 23072460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of persistence length on binding of DNA to polyions and overcharging of their intermolecular complexes in aqueous and in 1-methyl-3-octyl imidazolium chloride ionic liquid solutions.
    Rawat K; Pathak J; Bohidar HB
    Phys Chem Chem Phys; 2013 Aug; 15(29):12262-73. PubMed ID: 23775068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixing ratio dependent complex coacervation versus bicontinuous gelation of pectin with in situ formed zein nanoparticles.
    Kaushik P; Rawat K; Aswal VK; Kohlbrecher J; Bohidar HB
    Soft Matter; 2018 Aug; 14(31):6463-6475. PubMed ID: 30051132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent complex coacervates of agar and in situ formed zein nanoparticles: Role of electrostatic forces.
    Kaushik P; Rawat K; Aswal VK; Kohlbrecher J; Bohidar HB
    Carbohydr Polym; 2019 Nov; 224():115150. PubMed ID: 31472835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of organic and inorganic salt environment on the complex coacervation of in situ formed protein nanoparticles and DNA.
    Pandey PK; Kaushik P; Rawat K; Bohidar HB
    Int J Biol Macromol; 2019 Feb; 122():1290-1296. PubMed ID: 30227204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural study of coacervation in protein-polyelectrolyte complexes.
    Chodankar S; Aswal VK; Kohlbrecher J; Vavrin R; Wagh AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031913. PubMed ID: 18851071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface patch binding and mesophase separation in biopolymeric polyelectrolyte-polyampholyte solutions.
    Pathak J; Rawat K; Bohidar HB
    Int J Biol Macromol; 2014 Feb; 63():29-37. PubMed ID: 24161686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent hydrophobicity induced complex coacervation of dsDNA and in situ formed zein nanoparticles.
    Pandey PK; Kaushik P; Rawat K; Aswal VK; Bohidar HB
    Soft Matter; 2017 Oct; 13(38):6784-6791. PubMed ID: 28819659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of salt on intermolecular polyelectrolyte complexes formation between cationic microgel and polyanion.
    Ogawa K
    Adv Colloid Interface Sci; 2015 Dec; 226(Pt A):115-21. PubMed ID: 26472211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding.
    Pathak J; Priyadarshini E; Rawat K; Bohidar HB
    Adv Colloid Interface Sci; 2017 Dec; 250():40-53. PubMed ID: 29128042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-Dependent Complex Coacervation of Engineered Elastin-like Polypeptide and Hyaluronic Acid Polyelectrolytes.
    Tang JD; Caliari SR; Lampe KJ
    Biomacromolecules; 2018 Oct; 19(10):3925-3935. PubMed ID: 30185029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin-agar molecular systems.
    Boral S; Bohidar HB
    J Phys Chem B; 2010 Sep; 114(37):12027-35. PubMed ID: 20809576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The model Lysozyme-PSSNa system for electrostatic complexation: Similarities and differences with complex coacervation.
    Cousin F; Gummel J; Combet S; Boué F
    Adv Colloid Interface Sci; 2011 Sep; 167(1-2):71-84. PubMed ID: 21820643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex Coacervation and Overcharging during Interaction between Hydrophobic Zein and Hydrophilic Laponite in Aqueous Ethanol Solution.
    Tiwari P; Bharti I; Bohidar HB; Quadir S; Joshi MC; Arfin N
    ACS Omega; 2020 Dec; 5(51):33064-33074. PubMed ID: 33403268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyelectrolyte complex coacervation by electrostatic dipolar interactions.
    Adhikari S; Leaf MA; Muthukumar M
    J Chem Phys; 2018 Oct; 149(16):163308. PubMed ID: 30384692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation.
    Pawar N; Bohidar HB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036107. PubMed ID: 21230139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of electrostatic interactions and complex formation of ɣ-poly-glutamic acid (PGA) and ɛ-poly-l-lysine (PLL) in aqueous solutions.
    Muriel Mundo JL; Liu J; Tan Y; Zhou H; Zhang Z; McClements DJ
    Food Res Int; 2020 Feb; 128():108781. PubMed ID: 31955754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizations of critical processes in liquid-liquid phase separation of the elastomeric protein-water system: microscopic observations and light scattering measurements.
    Kaibara K; Watanabe T; Miyakawa K
    Biopolymers; 2000 Apr; 53(5):369-79. PubMed ID: 10738199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.