BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32966875)

  • 1. Characterization of the hypoxia-inducible factor-1 pathway in hearts of Antarctic notothenioid fishes.
    O'Brien KM; Rix AS; Grove TJ; Sarrimanolis J; Brooking A; Roberts M; Crockett EL
    Comp Biochem Physiol B Biochem Mol Biol; 2020 Dec; 250():110505. PubMed ID: 32966875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperoxia Does Not Extend Critical Thermal Maxima (CTmax) in White- or Red-Blooded Antarctic Notothenioid Fishes.
    Devor DP; Kuhn DE; O'Brien KM; Crockett EL
    Physiol Biochem Zool; 2016; 89(1):1-9. PubMed ID: 27082520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hypoxia response pathway in the Antarctic fish Notothenia coriiceps is functional despite a poly Q/E insertion mutation in HIF-1α.
    O'Brien KM; Rix AS; Jasmin A; Lavelle E
    Comp Biochem Physiol Part D Genomics Proteomics; 2024 Jun; 50():101218. PubMed ID: 38412701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia-Inducible Factor-1α in Antarctic notothenioids contains a polyglutamine and glutamic acid insert that varies in length with phylogeny.
    Rix AS; Grove TJ; O'Brien KM
    Polar Biol; 2017 Dec; 40(12):2537-2545. PubMed ID: 29430077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate.
    O'Brien KM; Joyce W; Crockett EL; Axelsson M; Egginton S; Farrell AP
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34042975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac mitochondrial metabolism may contribute to differences in thermal tolerance of red- and white-blooded Antarctic notothenioid fishes.
    O'Brien KM; Rix AS; Egginton S; Farrell AP; Crockett EL; Schlauch K; Woolsey R; Hoffman M; Merriman S
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29895681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal tolerance of Antarctic notothenioid fishes correlates with level of circulating hemoglobin.
    Beers JM; Sidell BD
    Physiol Biochem Zool; 2011; 84(4):353-62. PubMed ID: 21743249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis.
    Urschel MR; O'Brien KM
    J Exp Biol; 2008 Aug; 211(Pt 16):2638-46. PubMed ID: 18689417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to critical thermal maxima increases oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes.
    Mueller IA; Devor DP; Grim JM; Beers JM; Crockett EL; O'Brien KM
    J Exp Biol; 2012 Oct; 215(Pt 20):3655-64. PubMed ID: 22811244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance.
    Biederman AM; Kuhn DE; O'Brien KM; Crockett EL
    J Comp Physiol B; 2019 Apr; 189(2):213-222. PubMed ID: 30739144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity.
    Biederman AM; Kuhn DE; O'Brien KM; Crockett EL
    Comp Biochem Physiol B Biochem Mol Biol; 2019 Sep; 235():46-53. PubMed ID: 31176865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of mitochondrial glycerol-3-phosphate acyltransferase in notothenioid fishes.
    Keenan KA; Grove TJ; Oldham CA; O'Brien KM
    Comp Biochem Physiol B Biochem Mol Biol; 2017 Feb; 204():9-26. PubMed ID: 27836743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal profiles reveal stark contrasts in properties of biological membranes from heart among Antarctic notothenioid fishes which vary in expression of hemoglobin and myoglobin.
    Evans ER; Farnoud AM; O'Brien KM; Crockett EL
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 252():110539. PubMed ID: 33242660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle fine structure may maintain the function of oxidative fibres in haemoglobinless Antarctic fishes.
    O'Brien KM; Skilbeck C; Sidell BD; Egginton S
    J Exp Biol; 2003 Jan; 206(Pt 2):411-21. PubMed ID: 12477911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expansion of capacities for iron transport and sequestration reflects plasma volumes and heart mass among white-blooded notothenioid fishes.
    Kuhn DE; O'Brien KM; Crockett EL
    Am J Physiol Regul Integr Comp Physiol; 2016 Oct; 311(4):R649-R657. PubMed ID: 27465736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship among circulating hemoglobin, nitric oxide synthase activities and angiogenic poise in red- and white-blooded Antarctic notothenioid fishes.
    Beers JM; Borley KA; Sidell BD
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):422-9. PubMed ID: 20362691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of splenic contraction persists as a vestigial trait in white-blooded Antarctic fishes.
    Joyce W; Axelsson M
    J Fish Biol; 2021 Jan; 98(1):287-291. PubMed ID: 33090461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat stress in the heart and muscle of the Antarctic fishes Notothenia rossii and Notothenia coriiceps: Carbohydrate metabolism and antioxidant defence.
    Souza MRDP; Herrerias T; Zaleski T; Forgati M; Kandalski PK; Machado C; Silva DT; Piechnik CA; Moura MO; Donatti L
    Biochimie; 2018 Mar; 146():43-55. PubMed ID: 29155109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish.
    Bilyk KT; Vargas-Chacoff L; Cheng CC
    BMC Evol Biol; 2018 Sep; 18(1):143. PubMed ID: 30231868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone microstructure and bone mineral density are not systemically different in Antarctic icefishes and related Antarctic notothenioids.
    Ashique AM; Atake OJ; Ovens K; Guo R; Pratt IV; Detrich HW; Cooper DML; Desvignes T; Postlethwait JH; Eames BF
    J Anat; 2022 Jan; 240(1):34-49. PubMed ID: 34423431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.