These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32967057)

  • 1. Local acclimatisation-driven differential gene and protein expression patterns of Hsp70 in Acropora muricata: Implications for coral tolerance to bleaching.
    Louis YD; Bhagooli R; Seveso D; Maggioni D; Galli P; Vai M; Dyall SD
    Mol Ecol; 2020 Nov; 29(22):4382-4394. PubMed ID: 32967057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algal symbiont diversity in Acropora muricata from the extreme reef of Bouraké associated with resistance to coral bleaching.
    Alessi C; Lemonnier H; Camp EF; Wabete N; Payri C; Rodolfo Metalpa R
    PLoS One; 2024; 19(2):e0296902. PubMed ID: 38416713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.
    Silverstein RN; Cunning R; Baker AC
    Glob Chang Biol; 2015 Jan; 21(1):236-49. PubMed ID: 25099991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential bleaching and recovery pattern of southeast Indian coral reef to 2016 global mass bleaching event: Occurrence of stress-tolerant symbiont Durusdinium (Clade D) in corals of Palk Bay.
    Thinesh T; Meenatchi R; Jose PA; Kiran GS; Selvin J
    Mar Pollut Bull; 2019 Aug; 145():287-294. PubMed ID: 31590790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching.
    Rosic NN; Pernice M; Dove S; Dunn S; Hoegh-Guldberg O
    Cell Stress Chaperones; 2011 Jan; 16(1):69-80. PubMed ID: 20821176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles.
    Quigley KM; Randall CJ; van Oppen MJH; Bay LK
    Biol Open; 2020 Jan; 9(1):. PubMed ID: 31915210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef.
    Howells EJ; Willis BL; Bay LK; van Oppen MJ
    Mol Ecol; 2013 Jul; 22(14):3693-708. PubMed ID: 23730715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of bleaching on oxygen dynamics and energy metabolism of two Caribbean coral species.
    Linsmayer LB; Noel SK; Leray M; Wangpraseurt D; Hassibi C; Kline DI; Tresguerres M
    Sci Total Environ; 2024 Apr; 919():170753. PubMed ID: 38360316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries.
    Morikawa MK; Palumbi SR
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10586-10591. PubMed ID: 31061118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bleaching and post-bleaching mortality of
    Sakai K; Singh T; Iguchi A
    PeerJ; 2019; 7():e8138. PubMed ID: 31824767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals.
    Boulotte NM; Dalton SJ; Carroll AG; Harrison PL; Putnam HM; Peplow LM; van Oppen MJ
    ISME J; 2016 Nov; 10(11):2693-2701. PubMed ID: 27093048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia.
    Pratchett MS; McCowan D; Maynard JA; Heron SF
    PLoS One; 2013; 8(7):e70443. PubMed ID: 23922992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility.
    Alderdice R; Suggett DJ; Cárdenas A; Hughes DJ; Kühl M; Pernice M; Voolstra CR
    Glob Chang Biol; 2021 Jan; 27(2):312-326. PubMed ID: 33197302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tenacious D:
    Silverstein RN; Cunning R; Baker AC
    J Exp Biol; 2017 Apr; 220(Pt 7):1192-1196. PubMed ID: 28108671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.
    Jones AM; Berkelmans R; van Oppen MJ; Mieog JC; Sinclair W
    Proc Biol Sci; 2008 Jun; 275(1641):1359-65. PubMed ID: 18348962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in coral-associated microbial communities during a bleaching event.
    Bourne D; Iida Y; Uthicke S; Smith-Keune C
    ISME J; 2008 Apr; 2(4):350-63. PubMed ID: 18059490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid thermal adaptation in photosymbionts of reef-building corals.
    Chakravarti LJ; Beltran VH; van Oppen MJH
    Glob Chang Biol; 2017 Nov; 23(11):4675-4688. PubMed ID: 28447372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term improvement of heat tolerance in naturally growing
    Singh T; Sakai K; Ishida-Castañeda J; Iguchi A
    PeerJ; 2023; 11():e14629. PubMed ID: 36627918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of gene expression and symbiosis in reef-building coral acquired heat tolerance.
    Strader ME; Quigley KM
    Nat Commun; 2022 Aug; 13(1):4513. PubMed ID: 35922443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal light-scattering accelerates bleaching response in reef-building corals.
    Swain TD; DuBois E; Gomes A; Stoyneva VP; Radosevich AJ; Henss J; Wagner ME; Derbas J; Grooms HW; Velazquez EM; Traub J; Kennedy BJ; Grigorescu AA; Westneat MW; Sanborn K; Levine S; Schick M; Parsons G; Biggs BC; Rogers JD; Backman V; Marcelino LA
    BMC Ecol; 2016 Mar; 16():10. PubMed ID: 26996922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.