BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32967102)

  • 21. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease.
    Lee WC; Yoshihara M; Littleton JT
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):3224-9. PubMed ID: 14978262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease.
    Truant R; Atwal RS; Burtnik A
    Prog Neurobiol; 2007 Nov; 83(4):211-27. PubMed ID: 17240517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies.
    Wright GEB; Black HF; Collins JA; Gall-Duncan T; Caron NS; Pearson CE; Hayden MR
    Lancet Neurol; 2020 Nov; 19(11):930-939. PubMed ID: 33098802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting Gpr52 lowers mutant HTT levels and rescues Huntington's disease-associated phenotypes.
    Song H; Li H; Guo S; Pan Y; Fu Y; Zhou Z; Li Z; Wen X; Sun X; He B; Gu H; Zhao Q; Wang C; An P; Luo S; Hu Y; Xie X; Lu B
    Brain; 2018 Jun; 141(6):1782-1798. PubMed ID: 29608652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.
    Liu W; Chaurette J; Pfister EL; Kennington LA; Chase KO; Bullock J; Vonsattel JP; Faull RL; Macdonald D; DiFiglia M; Zamore PD; Aronin N
    J Huntingtons Dis; 2013; 2(4):491-500. PubMed ID: 25062733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insoluble TATA-binding protein accumulation in Huntington's disease cortex.
    van Roon-Mom WM; Reid SJ; Jones AL; MacDonald ME; Faull RL; Snell RG
    Brain Res Mol Brain Res; 2002 Dec; 109(1-2):1-10. PubMed ID: 12531510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orb2 as modulator of Brat and their role at the neuromuscular junction.
    Santana E; Casas-Tintó S
    J Neurogenet; 2017 Dec; 31(4):181-188. PubMed ID: 29105522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Huntingtin protein: A new option for fixing the Huntington's disease countdown clock.
    Caterino M; Squillaro T; Montesarchio D; Giordano A; Giancola C; Melone MAB
    Neuropharmacology; 2018 Jun; 135():126-138. PubMed ID: 29526547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitive biochemical aggregate detection reveals aggregation onset before symptom development in cellular and murine models of Huntington's disease.
    Weiss A; Klein C; Woodman B; Sathasivam K; Bibel M; Régulier E; Bates GP; Paganetti P
    J Neurochem; 2008 Feb; 104(3):846-58. PubMed ID: 17986219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis.
    Sang TK; Li C; Liu W; Rodriguez A; Abrams JM; Zipursky SL; Jackson GR
    Hum Mol Genet; 2005 Feb; 14(3):357-72. PubMed ID: 15590702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Huntington's disease: molecular basis of neurodegeneration.
    Rubinsztein DC; Carmichael J
    Expert Rev Mol Med; 2003 Aug; 5(20):1-21. PubMed ID: 14585171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat.
    Clemens LE; Weber JJ; Wlodkowski TT; Yu-Taeger L; Michaud M; Calaminus C; Eckert SH; Gaca J; Weiss A; Magg JC; Jansson EK; Eckert GP; Pichler BJ; Bordet T; Pruss RM; Riess O; Nguyen HP
    Brain; 2015 Dec; 138(Pt 12):3632-53. PubMed ID: 26490331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drosophila CPEB Orb2A mediates memory independent of Its RNA-binding domain.
    Krüttner S; Stepien B; Noordermeer JN; Mommaas MA; Mechtler K; Dickson BJ; Keleman K
    Neuron; 2012 Oct; 76(2):383-95. PubMed ID: 23083740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pcaf modulates polyglutamine pathology in a Drosophila model of Huntington's disease.
    Bodai L; Pallos J; Thompson LM; Marsh JL
    Neurodegener Dis; 2012; 9(2):104-6. PubMed ID: 21912091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular aspects of Huntington's disease.
    Walling HW; Baldassare JJ; Westfall TC
    J Neurosci Res; 1998 Nov; 54(3):301-8. PubMed ID: 9819135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-Term Memory Formation in
    Kozlov EN; Tokmatcheva EV; Khrustaleva AM; Grebenshchikov ES; Deev RV; Gilmutdinov RA; Lebedeva LA; Zhukova M; Savvateeva-Popova EV; Schedl P; Shidlovskii YV
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Drosophila lingerer protein cooperates with Orb2 in long-term memory formation.
    Kimura S; Sakakibara Y; Sato K; Ote M; Ito H; Koganezawa M; Yamamoto D
    J Neurogenet; 2015 Mar; 29(1):8-17. PubMed ID: 24913805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The proteins behind the persistence of memory.
    Robinson R
    PLoS Biol; 2014 Feb; 12(2):e1001787. PubMed ID: 24523663
    [No Abstract]   [Full Text] [Related]  

  • 39. Deciphering the key mechanisms leading to alteration of lipid metabolism in Drosophila model of Huntington's disease.
    Singh A; Agrawal N
    Biochim Biophys Acta Mol Basis Dis; 2021 Jul; 1867(7):166127. PubMed ID: 33722743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator.
    Khan MR; Li L; Pérez-Sánchez C; Saraf A; Florens L; Slaughter BD; Unruh JR; Si K
    Cell; 2015 Dec; 163(6):1468-83. PubMed ID: 26638074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.