These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32967316)

  • 21. Sandy Soil Improvement through Microbially Induced Calcite Precipitation (MICP) by Immersion.
    Liu S; Du K; Wen K; Huang W; Amini F; Li L
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocementation of soils of different surface chemistries via enzyme induced carbonate precipitation (EICP): An integrated laboratory and molecular dynamics study.
    Ghasemi H; Hatam-Lee SM; Khodadadi Tirkolaei H; Yazdani H
    Biophys Chem; 2022 May; 284():106793. PubMed ID: 35278891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unconfined Compressive Properties of Composite Sand Stabilized with Organic Polymers and Natural Fibers.
    Bai Y; Liu J; Song Z; Chen Z; Jiang C; Lan X; Shi X; Bu F; Kanungo DP
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31569683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of biochar in the calcite precipitation of sandy soil using sporosarcina ureae.
    Shukla AK; Sharma AK
    J Environ Manage; 2024 May; 359():121048. PubMed ID: 38723498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material.
    Jamshaid H; Ali H; Mishra RK; Nazari S; Chandan V
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement and Soil Consistency of Sand-Clay Mixtures Treated with Enzymatic-Induced Carbonate Precipitation.
    Mo Y; Yue S; Zhou Q; Liu X
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocementation of Pyrite Tailings Using Microbially Induced Calcite Carbonate Precipitation.
    Kang B; Zha F; Deng W; Wang R; Sun X; Lu Z
    Molecules; 2022 Jun; 27(11):. PubMed ID: 35684545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A cleaner biocementation method of soil via microbially induced struvite precipitation: A experimental and numerical analysis.
    Yu X; Yang H; Wang H
    J Environ Manage; 2022 Aug; 316():115280. PubMed ID: 35588665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia.
    Mwandira W; Nakashima K; Kawasaki S; Ito M; Sato T; Igarashi T; Chirwa M; Banda K; Nyambe I; Nakayama S; Nakata H; Ishizuka M
    Chemosphere; 2019 Aug; 228():17-25. PubMed ID: 31022616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation.
    Erdmann N; Strieth D
    World J Microbiol Biotechnol; 2022 Dec; 39(2):61. PubMed ID: 36576609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbially induced calcite precipitation performance of multiple landfill indigenous bacteria compared to a commercially available bacteria in porous media.
    Rajasekar A; Moy CKS; Wilkinson S; Sekar R
    PLoS One; 2021; 16(7):e0254676. PubMed ID: 34270610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of Sand Cementation with an Efficient Method of Microbial-Induced Calcite Precipitation.
    Wang L; Liu S
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New non-ureolytic heterotrophic microbial induced carbonate precipitation for suppression of sand dune wind erosion.
    Hemayati M; Nikooee E; Habibagahi G; Niazi A; Afzali SF
    Sci Rep; 2023 Apr; 13(1):5845. PubMed ID: 37037897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental impacts of chemical and microbial grouting.
    Naeimi M; Haddad A
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2264-2272. PubMed ID: 31776901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fly ash incorporated with biocement to improve strength of expansive soil.
    Li M; Fang C; Kawasaki S; Achal V
    Sci Rep; 2018 Feb; 8(1):2565. PubMed ID: 29416093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Casein-assisted enhancement of the compressive strength of biocemented sand.
    Miyake M; Kim D; Hata T
    Sci Rep; 2022 Jul; 12(1):12754. PubMed ID: 35882965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental Study on Silt Soil Improved by Microbial Solidification with the Use of Lignin.
    Sun Y; Zhong X; Lv J; Wang G
    Microorganisms; 2023 Jan; 11(2):. PubMed ID: 36838245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental Study on the Wind Erosion Resistance of Aeolian Sand Solidified by Microbially Induced Calcite Precipitation (MICP).
    Qu J; Li G; Ma B; Liu J; Zhang J; Liu X; Zhang Y
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Life cycle assessment of biocemented sands using enzyme induced carbonate precipitation (EICP) for soil stabilization applications.
    Alotaibi E; Arab MG; Abdallah M; Nassif N; Omar M
    Sci Rep; 2022 Apr; 12(1):6032. PubMed ID: 35411057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effect of Clay on the Shear Strength of Microbially Cured Sand Particles.
    Feng D; Gao H; Li Z; Liang S
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.