These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 32967624)
1. Comprehensive analysis of the Ppatg3 mutant reveals that autophagy plays important roles in gametophore senescence in Physcomitrella patens. Chen Z; Wang W; Pu X; Dong X; Gao B; Li P; Jia Y; Liu A; Liu L BMC Plant Biol; 2020 Sep; 20(1):440. PubMed ID: 32967624 [TBL] [Abstract][Full Text] [Related]
2. ATG5-knockout mutants of Physcomitrella provide a platform for analyzing the involvement of autophagy in senescence processes in plant cells. Mukae K; Inoue Y; Moriyasu Y Plant Signal Behav; 2015; 10(11):e1086859. PubMed ID: 26368055 [TBL] [Abstract][Full Text] [Related]
3. BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens. Hata Y; Naramoto S; Kyozuka J J Plant Res; 2019 Sep; 132(5):617-627. PubMed ID: 31432295 [TBL] [Abstract][Full Text] [Related]
4. Functional characterization of metallothionein-like genes from Physcomitrella patens: expression profiling, yeast heterologous expression, and disruption of PpMT1.2a gene. Pakdee O; Songnuan W; Panvisavas N; Pokethitiyook P; Yokthongwattana K; Meetam M Planta; 2019 Aug; 250(2):427-443. PubMed ID: 31037485 [TBL] [Abstract][Full Text] [Related]
5. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Aoyama T; Hiwatashi Y; Shigyo M; Kofuji R; Kubo M; Ito M; Hasebe M Development; 2012 Sep; 139(17):3120-9. PubMed ID: 22833122 [TBL] [Abstract][Full Text] [Related]
6. PAS-histidine kinases PHK1 and PHK2 exert oxygen-dependent dual and opposite effects on gametophore formation in the moss Physcomitrella patens. Ryo M; Yamashino T; Yamakawa H; Fujita Y; Aoki S Biochem Biophys Res Commun; 2018 Sep; 503(4):2861-2865. PubMed ID: 30100059 [TBL] [Abstract][Full Text] [Related]
7. Two ANGUSTIFOLIA genes regulate gametophore and sporophyte development in Physcomitrella patens. Hashida Y; Takechi K; Abiru T; Yabe N; Nagase H; Hattori K; Takio S; Sato Y; Hasebe M; Tsukaya H; Takano H Plant J; 2020 Mar; 101(6):1318-1330. PubMed ID: 31674691 [TBL] [Abstract][Full Text] [Related]
8. Protein kinase PpCIPK1 modulates plant salt tolerance in Physcomitrella patens. Xiao F; Li X; He J; Zhao J; Wu G; Gong Q; Zhou H; Lin H Plant Mol Biol; 2021 Apr; 105(6):685-696. PubMed ID: 33543389 [TBL] [Abstract][Full Text] [Related]
9. Genes encoding lipid II flippase MurJ and peptidoglycan hydrolases are required for chloroplast division in the moss Physcomitrella patens. Utsunomiya H; Saiki N; Kadoguchi H; Fukudome M; Hashimoto S; Ueda M; Takechi K; Takano H Plant Mol Biol; 2021 Nov; 107(4-5):405-415. PubMed ID: 33078277 [TBL] [Abstract][Full Text] [Related]
10. SEC6 exocyst subunit contributes to multiple steps of growth and development of Physcomitrella (Physcomitrium patens). Brejšková L; Hála M; Rawat A; Soukupová H; Cvrčková F; Charlot F; Nogué F; Haluška S; Žárský V Plant J; 2021 May; 106(3):831-843. PubMed ID: 33599020 [TBL] [Abstract][Full Text] [Related]
11. Comparative Proteomic Analysis of Wild-Type Luo W; Komatsu S; Abe T; Matsuura H; Takahashi K Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32093080 [TBL] [Abstract][Full Text] [Related]
12. A Functional Alternative Oxidase Modulates Plant Salt Tolerance in Physcomitrella patens. Wu G; Li S; Li X; Liu Y; Zhao S; Liu B; Zhou H; Lin H Plant Cell Physiol; 2019 Aug; 60(8):1829-1841. PubMed ID: 31119292 [TBL] [Abstract][Full Text] [Related]
13. A CELLULOSE SYNTHASE (CESA) gene essential for gametophore morphogenesis in the moss Physcomitrella patens. Goss CA; Brockmann DJ; Bushoven JT; Roberts AW Planta; 2012 Jun; 235(6):1355-67. PubMed ID: 22215046 [TBL] [Abstract][Full Text] [Related]
14. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens. Yotsui I; Serada S; Naka T; Saruhashi M; Taji T; Hayashi T; Quatrano RS; Sakata Y Biochem Biophys Res Commun; 2016 Mar; 471(4):589-95. PubMed ID: 26869511 [TBL] [Abstract][Full Text] [Related]
15. Functional redundancy and divergence of β-carbonic anhydrases in Physcomitrella patens. Chen Z; Wang W; Dong X; Pu X; Gao B; Liu L Planta; 2020 Jul; 252(2):20. PubMed ID: 32671568 [TBL] [Abstract][Full Text] [Related]
16. A mycorrhizae-like gene regulates stem cell and gametophore development in mosses. Wang S; Guan Y; Wang Q; Zhao J; Sun G; Hu X; Running MP; Sun H; Huang J Nat Commun; 2020 Apr; 11(1):2030. PubMed ID: 32332755 [TBL] [Abstract][Full Text] [Related]
17. Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens. Fesenko IA; Arapidi GP; Skripnikov AY; Alexeev DG; Kostryukova ES; Manolov AI; Altukhov IA; Khazigaleeva RA; Seredina AV; Kovalchuk SI; Ziganshin RH; Zgoda VG; Novikova SE; Semashko TA; Slizhikova DK; Ptushenko VV; Gorbachev AY; Govorun VM; Ivanov VT BMC Plant Biol; 2015 Mar; 15():87. PubMed ID: 25848929 [TBL] [Abstract][Full Text] [Related]
18. Light-regulated PAS-containing histidine kinases delay gametophore formation in the moss Physcomitrella patens. Ryo M; Yamashino T; Nomoto Y; Goto Y; Ichinose M; Sato K; Sugita M; Aoki S J Exp Bot; 2018 Sep; 69(20):4839-4851. PubMed ID: 29992239 [TBL] [Abstract][Full Text] [Related]
19. Regulatory Mechanism of ABA and ABI3 on Vegetative Development in the Moss Zhao M; Li Q; Chen Z; Lv Q; Bao F; Wang X; He Y Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213069 [TBL] [Abstract][Full Text] [Related]
20. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Kofuji R; Hasebe M Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]