BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32967838)

  • 1. Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming.
    Sadai S; Condron A; DeConto R; Pollard D
    Sci Adv; 2020 Sep; 6(39):. PubMed ID: 32967838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in future climate due to Antarctic meltwater.
    Bronselaer B; Winton M; Griffies SM; Hurlin WJ; Rodgers KB; Sergienko OV; Stouffer RJ; Russell JL
    Nature; 2018 Dec; 564(7734):53-58. PubMed ID: 30455421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica.
    Turney CSM; Fogwill CJ; Golledge NR; McKay NP; van Sebille E; Jones RT; Etheridge D; Rubino M; Thornton DP; Davies SM; Ramsey CB; Thomas ZA; Bird MI; Munksgaard NC; Kohno M; Woodward J; Winter K; Weyrich LS; Rootes CM; Millman H; Albert PG; Rivera A; van Ommen T; Curran M; Moy A; Rahmstorf S; Kawamura K; Hillenbrand CD; Weber ME; Manning CJ; Young J; Cooper A
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):3996-4006. PubMed ID: 32047039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The multi-millennial Antarctic commitment to future sea-level rise.
    Golledge NR; Kowalewski DE; Naish TR; Levy RH; Fogwill CJ; Gasson EG
    Nature; 2015 Oct; 526(7573):421-5. PubMed ID: 26469052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global environmental consequences of twenty-first-century ice-sheet melt.
    Golledge NR; Keller ED; Gomez N; Naughten KA; Bernales J; Trusel LD; Edwards TL
    Nature; 2019 Feb; 566(7742):65-72. PubMed ID: 30728520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competing climate feedbacks of ice sheet freshwater discharge in a warming world.
    Li D; DeConto RM; Pollard D; Hu Y
    Nat Commun; 2024 Jun; 15(1):5178. PubMed ID: 38890359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater.
    Li Q; England MH; Hogg AM; Rintoul SR; Morrison AK
    Nature; 2023 Mar; 615(7954):841-847. PubMed ID: 36991191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning.
    Golledge NR; Menviel L; Carter L; Fogwill CJ; England MH; Cortese G; Levy RH
    Nat Commun; 2014 Sep; 5():5107. PubMed ID: 25263015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.
    Garabato AC; Forryan A; Dutrieux P; Brannigan L; Biddle LC; Heywood KJ; Jenkins A; Firing YL; Kimura S
    Nature; 2017 Feb; 542(7640):219-222. PubMed ID: 28135723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge.
    Bakker P; Clark PU; Golledge NR; Schmittner A; Weber ME
    Nature; 2017 Jan; 541(7635):72-76. PubMed ID: 27951585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model.
    Park JY; Schloesser F; Timmermann A; Choudhury D; Lee JY; Nellikkattil AB
    Nat Commun; 2023 Feb; 14(1):636. PubMed ID: 36788205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed Antarctic sea-ice decline in high-resolution climate change simulations.
    Rackow T; Danilov S; Goessling HF; Hellmer HH; Sein DV; Semmler T; Sidorenko D; Jung T
    Nat Commun; 2022 Feb; 13(1):637. PubMed ID: 35110565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abrupt climate changes in the last two deglaciations simulated with different Northern ice sheet discharge and insolation.
    Obase T; Abe-Ouchi A; Saito F
    Sci Rep; 2021 Nov; 11(1):22359. PubMed ID: 34824287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread movement of meltwater onto and across Antarctic ice shelves.
    Kingslake J; Ely JC; Das I; Bell RE
    Nature; 2017 Apr; 544(7650):349-352. PubMed ID: 28425995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.
    Li X; Holland DM; Gerber EP; Yoo C
    Nature; 2014 Jan; 505(7484):538-42. PubMed ID: 24451542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greenland ice mass loss during the Younger Dryas driven by Atlantic Meridional Overturning Circulation feedbacks.
    Rainsley E; Menviel L; Fogwill CJ; Turney CSM; Hughes ALC; Rood DH
    Sci Rep; 2018 Aug; 8(1):11307. PubMed ID: 30093676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pink marine sediments reveal rapid ice melt and Arctic meltwater discharge during Dansgaard-Oeschger warmings.
    Rasmussen TL; Thomsen E
    Nat Commun; 2013; 4():2849. PubMed ID: 24264767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.
    Silvano A; Rintoul SR; Peña-Molino B; Hobbs WR; van Wijk E; Aoki S; Tamura T; Williams GD
    Sci Adv; 2018 Apr; 4(4):eaap9467. PubMed ID: 29675467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets.
    Rohling EJ; Marsh R; Wells NC; Siddall M; Edwards NR
    Nature; 2004 Aug; 430(7003):1016-21. PubMed ID: 15329718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate.
    Liu W; Fedorov AV; Xie SP; Hu S
    Sci Adv; 2020 Jun; 6(26):eaaz4876. PubMed ID: 32637596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.