BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32967936)

  • 1. The origin of the high stability of 3'-terminal uridine tetrads: contributions of hydrogen bonding, stacking interactions, and steric factors evaluated using modified oligonucleotide analogs.
    Andrałojć W; Pasternak K; Sarzyńska J; Zielińska K; Kierzek R; Gdaniec Z
    RNA; 2020 Dec; 26(12):2000-2016. PubMed ID: 32967936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the structural basis for the exceptional stability of RNA G-quadruplexes capped by a uridine tetrad at the 3' terminus.
    Andrałojć W; Małgowska M; Sarzyńska J; Pasternak K; Szpotkowski K; Kierzek R; Gdaniec Z
    RNA; 2019 Jan; 25(1):121-134. PubMed ID: 30341177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of DNA quadruplexes containing T-tetrads formed by bunch-oligonucleotides.
    Oliviero G; Amato J; Borbone N; Galeone A; Varra M; Piccialli G; Mayol L
    Biopolymers; 2006 Feb; 81(3):194-201. PubMed ID: 16235233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of an RNA quadruplex containing inosine tetrad: implications for the roles of NH2 group in purine tetrads.
    Pan B; Shi K; Sundaralingam M
    J Mol Biol; 2006 Oct; 363(2):451-9. PubMed ID: 16978642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel pyrimidine tetrad contributing to stabilize tetramolecular G-quadruplex structures.
    Esposito V; Pepe A; Filosa R; Mayol L; Virgilio A; Galeone A
    Org Biomol Chem; 2016 Mar; 14(10):2938-43. PubMed ID: 26876038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of l-thymidine, acyclic thymine and 8-bromoguanine on the stability of model G-quadruplex structures.
    Aviñó A; Mazzini S; Fàbrega C; Peñalver P; Gargallo R; Morales JC; Eritja R
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1205-1212. PubMed ID: 27705754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guanine base stacking in G-quadruplex nucleic acids.
    Lech CJ; Heddi B; Phan AT
    Nucleic Acids Res; 2013 Feb; 41(3):2034-46. PubMed ID: 23268444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting hydrogen bonding interactions to probe smaller linear and cyclic diamines binding to G-quadruplexes: a DFT and molecular dynamics study.
    Kanti Si M; Sen A; Ganguly B
    Phys Chem Chem Phys; 2017 May; 19(18):11474-11484. PubMed ID: 28425525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Modified Deoxythymine with Dibranched Tetraethylene Glycol Stabilizes G-Quadruplex Structures.
    Tateishi-Karimata H; Ohyama T; Muraoka T; Tanaka S; Kinbara K; Sugimoto N
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32041318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-G Base Tetrads.
    Escaja N; Mir B; Garavís M; González C
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple.
    Kuryavyi V; Majumdar A; Shallop A; Chernichenko N; Skripkin E; Jones R; Patel DJ
    J Mol Biol; 2001 Jun; 310(1):181-94. PubMed ID: 11419945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations.
    Vinnarasi S; Radhika R; Vijayakumar S; Shankar R
    J Biomol Struct Dyn; 2020 Feb; 38(2):317-339. PubMed ID: 30794082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-hole transfer in G-quadruplexes with different tetrad stacking geometries: a combined QM and MD study.
    Lech CJ; Phan AT; Michel-Beyerle ME; Voityuk AA
    J Phys Chem B; 2013 Aug; 117(34):9851-6. PubMed ID: 23906279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad-a common structural unit of G-quadruplex DNA.
    Kogut M; Kleist C; Czub J
    Nucleic Acids Res; 2016 Apr; 44(7):3020-30. PubMed ID: 26980278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porphyrin intercalation in G4-DNA quadruplexes by molecular dynamics simulations.
    Cavallari M; Garbesi A; Di Felice R
    J Phys Chem B; 2009 Oct; 113(40):13152-60. PubMed ID: 19754127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine.
    Cheong VV; Lech CJ; Heddi B; Phan AT
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):160-3. PubMed ID: 26563582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-stranded DNA structures can be stabilized by two different types of minor groove G:C:G:C tetrads.
    Escaja N; Gómez-Pinto I; Pedroso E; Gonzalez C
    J Am Chem Soc; 2007 Feb; 129(7):2004-14. PubMed ID: 17260988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides.
    Saccà B; Lacroix L; Mergny JL
    Nucleic Acids Res; 2005; 33(4):1182-92. PubMed ID: 15731338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural study of four-stranded quadruplex structures containing 2'-deoxy-8-(propyn-1-yl)adenosine.
    Esposito V; Randazzo A; Galeone A; Varra M; Mayol L
    Bioorg Med Chem; 2004 Mar; 12(5):1191-7. PubMed ID: 14980630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of different base tetrads by RHAU (DHX36): X-ray crystal structure of the G4 recognition motif bound to the 3'-end tetrad of a DNA G-quadruplex.
    Heddi B; Cheong VV; Schmitt E; Mechulam Y; Phan AT
    J Struct Biol; 2020 Jan; 209(1):107399. PubMed ID: 31586599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.