BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32968112)

  • 21. [Base excision repair].
    Sliwiński T; Błasiak J
    Postepy Biochem; 2005; 51(2):120-9. PubMed ID: 16209349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: Piecing together the evolutionary puzzle of DNA base damage repair mechanisms.
    Trasviña-Arenas CH; Demir M; Lin WJ; David SS
    DNA Repair (Amst); 2021 Dec; 108():103231. PubMed ID: 34649144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA.
    Drohat AC; Maiti A
    Org Biomol Chem; 2014 Nov; 12(42):8367-78. PubMed ID: 25181003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage.
    Dizdaroglu M
    Mutat Res; 2003 Oct; 531(1-2):109-26. PubMed ID: 14637249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages.
    Cannan WJ; Tsang BP; Wallace SS; Pederson DS
    J Biol Chem; 2014 Jul; 289(29):19881-93. PubMed ID: 24891506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The role of glycosylases of the base excision DNA repair in pathogenesis of hereditary and infectious human diseases].
    Sidorenko VS; Zharkov DO
    Mol Biol (Mosk); 2008; 42(5):891-903. PubMed ID: 18988537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA alkylation lesion repair: outcomes and implications in cancer chemotherapy.
    Peng Y; Pei H
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):47-62. PubMed ID: 33448187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
    Shi R; Shen XX; Rokas A; Eichman BF
    Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential Ability of Five DNA Glycosylases to Recognize and Repair Damage on Nucleosomal DNA.
    Olmon ED; Delaney S
    ACS Chem Biol; 2017 Mar; 12(3):692-701. PubMed ID: 28085251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Base excision DNA repair.
    Zharkov DO
    Cell Mol Life Sci; 2008 May; 65(10):1544-65. PubMed ID: 18259689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases.
    Prorok P; Grin IR; Matkarimov BT; Ishchenko AA; Laval J; Zharkov DO; Saparbaev M
    Cells; 2021 Jun; 10(7):. PubMed ID: 34202661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular response to endogenous DNA damage: DNA base modifications in gene expression regulation.
    Bordin DL; Lirussi L; Nilsen H
    DNA Repair (Amst); 2021 Mar; 99():103051. PubMed ID: 33540225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases.
    McKibbin PL; Kobori A; Taniguchi Y; Kool ET; David SS
    J Am Chem Soc; 2012 Jan; 134(3):1653-61. PubMed ID: 22175854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative DNA damage repair in mammalian cells: a new perspective.
    Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R
    DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noncatalytic Domains in DNA Glycosylases.
    Torgasheva NA; Diatlova EA; Grin IR; Endutkin AV; Mechetin GV; Vokhtantsev IP; Yudkina AV; Zharkov DO
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human DNA glycosylases involved in the repair of oxidatively damaged DNA.
    Ide H; Kotera M
    Biol Pharm Bull; 2004 Apr; 27(4):480-5. PubMed ID: 15056851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.
    Zhao B; O'Brien PJ
    Biochemistry; 2011 May; 50(20):4350-9. PubMed ID: 21491902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA repair mechanisms for the recognition and removal of damaged DNA bases.
    Mol CD; Parikh SS; Putnam CD; Lo TP; Tainer JA
    Annu Rev Biophys Biomol Struct; 1999; 28():101-28. PubMed ID: 10410797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells.
    Hegde ML; Hazra TK; Mitra S
    Cell Res; 2008 Jan; 18(1):27-47. PubMed ID: 18166975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair.
    Campalans A; Marsin S; Nakabeppu Y; O'connor TR; Boiteux S; Radicella JP
    DNA Repair (Amst); 2005 Jul; 4(7):826-35. PubMed ID: 15927541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.