BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32968335)

  • 1. A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling.
    Speiser JL; Miller ME; Tooze J; Ip E
    Expert Syst Appl; 2019 Nov; 134():93-101. PubMed ID: 32968335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data.
    Speiser JL
    J Biomed Inform; 2021 May; 117():103763. PubMed ID: 33781921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of variable selection methods for clinical predictive modeling.
    Sanchez-Pinto LN; Venable LR; Fahrenbach J; Churpek MM
    Int J Med Inform; 2018 Aug; 116():10-17. PubMed ID: 29887230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method.
    Jiang F; Kutia M; Sarkissian AJ; Lin H; Long J; Sun H; Wang G
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of variable selection methods for random forests and omics data sets.
    Degenhardt F; Seifert S; Szymczak S
    Brief Bioinform; 2019 Mar; 20(2):492-503. PubMed ID: 29045534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Extraction for Heroin-Use Classification Using Imbalanced Random Forest Methods.
    Beattie M; Nicholson C
    Subst Use Misuse; 2021; 56(1):123-130. PubMed ID: 33183142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Random Forest Algorithm-Based Prediction Model of Post-operative Mortality in Geriatric Patients With Hip Fractures.
    Xing F; Luo R; Liu M; Zhou Z; Xiang Z; Duan X
    Front Med (Lausanne); 2022; 9():829977. PubMed ID: 35646950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of statistical machine learning models for rectal protocol compliance in prostate external beam radiation therapy.
    Jones S; Hargrave C; Deegan T; Holt T; Mengersen K
    Med Phys; 2020 Apr; 47(4):1452-1459. PubMed ID: 31981427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random Forest (RF) Wrappers for Waveband Selection and Classification of Hyperspectral Data.
    Poona NK; van Niekerk A; Nadel RL; Ismail R
    Appl Spectrosc; 2016 Feb; 70(2):322-33. PubMed ID: 26903567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias in random forest variable importance measures: illustrations, sources and a solution.
    Strobl C; Boulesteix AL; Zeileis A; Hothorn T
    BMC Bioinformatics; 2007 Jan; 8():25. PubMed ID: 17254353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. oFVSD: a Python package of optimized forward variable selection decoder for high-dimensional neuroimaging data.
    Dang T; Fermin ASR; Machizawa MG
    Front Neuroinform; 2023; 17():1266713. PubMed ID: 37829329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone.
    Kim H; Lee S; Lee S; Hong S; Kang H; Kim N
    JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable importance-weighted Random Forests.
    Liu Y; Zhao H
    Quant Biol; 2017 Dec; 5(4):338-351. PubMed ID: 30034909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning in Aging: An Example of Developing Prediction Models for Serious Fall Injury in Older Adults.
    Speiser JL; Callahan KE; Houston DK; Fanning J; Gill TM; Guralnik JM; Newman AB; Pahor M; Rejeski WJ; Miller ME
    J Gerontol A Biol Sci Med Sci; 2021 Mar; 76(4):647-654. PubMed ID: 32498077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of O-glycosylation Sites Using Random Forest and GA-Tuned PSO Technique.
    Hassan H; Badr A; Abdelhalim MB
    Bioinform Biol Insights; 2015; 9():103-9. PubMed ID: 26244014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating Random Forests for Survival Analysis using Prediction Error Curves.
    Mogensen UB; Ishwaran H; Gerds TA
    J Stat Softw; 2012 Sep; 50(11):1-23. PubMed ID: 25317082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A random forest based computational model for predicting novel lncRNA-disease associations.
    Yao D; Zhan X; Zhan X; Kwoh CK; Li P; Wang J
    BMC Bioinformatics; 2020 Mar; 21(1):126. PubMed ID: 32216744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable selection and validation in multivariate modelling.
    Shi L; Westerhuis JA; Rosén J; Landberg R; Brunius C
    Bioinformatics; 2019 Mar; 35(6):972-980. PubMed ID: 30165467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.