These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32968497)

  • 21. Eye-hand coordination during visuomotor adaptation: effects of hemispace and joint coordination.
    Rand MK; Rentsch S
    Exp Brain Res; 2017 Dec; 235(12):3645-3661. PubMed ID: 28900673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Limb position drift results from misalignment of proprioceptive and visual maps.
    Patterson JR; Brown LE; Wagstaff DA; Sainburg RL
    Neuroscience; 2017 Mar; 346():382-394. PubMed ID: 28163058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Divisively Normalized Integration of Multisensory Error Information Develops Motor Memories Specific to Vision and Proprioception.
    Hayashi T; Kato Y; Nozaki D
    J Neurosci; 2020 Feb; 40(7):1560-1570. PubMed ID: 31924610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age effects on controlling tools with sensorimotor transformations.
    Sutter C; Ladwig S; Oehl M; Müsseler J
    Front Psychol; 2012; 3():573. PubMed ID: 23293617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual monitoring of goal-directed aiming movements.
    Brière J; Proteau L
    Q J Exp Psychol (Hove); 2017 Apr; 70(4):736-749. PubMed ID: 26902290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual target distance, but not visual cursor path length produces shifts in motor behavior.
    Wendker N; Sack OS; Sutter C
    Front Psychol; 2014; 5():225. PubMed ID: 24672507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance monitoring for brain-computer-interface actions.
    Schurger A; Gale S; Gozel O; Blanke O
    Brain Cogn; 2017 Feb; 111():44-50. PubMed ID: 27816779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of visuomotor delays on the control of movement and on perceptual localization in the presence and absence of visual targets.
    Avraham G; Sulimani E; Mussa-Ivaldi FA; Nisky I
    J Neurophysiol; 2019 Dec; 122(6):2259-2271. PubMed ID: 31577532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A biologically inspired neural model for visual and proprioceptive integration including sensory training.
    Saidi M; Towhidkhah F; Gharibzadeh S; Lari AA
    J Integr Neurosci; 2013 Dec; 12(4):491-511. PubMed ID: 24372068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proprioceptive recalibration arises slowly compared to reach adaptation.
    Zbib B; Henriques DY; Cressman EK
    Exp Brain Res; 2016 Aug; 234(8):2201-13. PubMed ID: 27014777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gaze behavior during visuomotor tracking with complex hand-cursor dynamics.
    Mathew J; Flanagan JR; Danion FR
    J Vis; 2019 Dec; 19(14):24. PubMed ID: 31868897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the role of peripheral visual afferent information for the control of rapid video-aiming movements.
    Bédard P; Proteau L
    Acta Psychol (Amst); 2003 May; 113(1):99-117. PubMed ID: 12679046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation to proprioceptive targets following visuomotor adaptation.
    Flannigan JC; Posthuma RJ; Lombardo JN; Murray C; Cressman EK
    Exp Brain Res; 2018 Feb; 236(2):419-432. PubMed ID: 29209829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eye movements in interception with delayed visual feedback.
    Cámara C; de la Malla C; López-Moliner J; Brenner E
    Exp Brain Res; 2018 Jul; 236(7):1837-1847. PubMed ID: 29675715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment.
    Wijeyaratnam DO; Chua R; Cressman EK
    Exp Brain Res; 2019 Jun; 237(6):1431-1444. PubMed ID: 30895342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for continuous processing of visual information in a manual video-aiming task.
    Proteau L; Roujoula A; Messier J
    J Mot Behav; 2009 May; 41(3):219-31. PubMed ID: 19366655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gaze behavior when learning to link sequential action phases in a manual task.
    Säfström D; Johansson RS; Flanagan JR
    J Vis; 2014 Apr; 14(4):. PubMed ID: 24695992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of a two cursor control device for development of a powered laparoscopic surgical tool.
    Herring SR; Hallbeck MS
    Ergonomics; 2009 Aug; 52(8):891-906. PubMed ID: 19629805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Human traveling wave EEG during voluntary movement of the hand].
    Belov DR; Stepanova PA; Kolodiazhnyĭ SF
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(2):166-80. PubMed ID: 25713867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.