These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 32968528)

  • 1. Hydrodynamics of a twisting slender swimmer.
    Iosilevskii G; Rashkovsky A
    R Soc Open Sci; 2020 Aug; 7(8):200754. PubMed ID: 32968528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamics of a Flexible Soft-Rayed Caudal Fin.
    Iosilevskii G
    PLoS One; 2016; 11(10):e0163517. PubMed ID: 27695043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The undulatory swimming gait of elongated swimmers revisited.
    Iosilevskii G
    Bioinspir Biomim; 2017 Mar; 12(3):036005. PubMed ID: 28362631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thrust generation during steady swimming and acceleration from rest in anguilliform swimmers.
    Du Clos KT; Dabiri JO; Costello JH; Colin SP; Morgan JR; Fogerson SM; Gemmell BJ
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31740507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The musculotendinous system of an anguilliform swimmer: Muscles, myosepta, dermis, and their interconnections in Anguilla rostrata.
    Danos N; Fisch N; Gemballa S
    J Morphol; 2008 Jan; 269(1):29-44. PubMed ID: 17886889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anguilliform Swimming Performance of an Eel-Inspired Soft Robot.
    Nguyen DQ; Ho VA
    Soft Robot; 2022 Jun; 9(3):425-439. PubMed ID: 34134542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming.
    Ramananarivo S; Godoy-Diana R; Thiria B
    J R Soc Interface; 2013 Nov; 10(88):20130667. PubMed ID: 23985737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of optimized anguilliform swimming.
    Kern S; Koumoutsakos P
    J Exp Biol; 2006 Dec; 209(Pt 24):4841-57. PubMed ID: 17142673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Ground Effect in Anguilliform Swimming.
    Ogunka UE; Daghooghi M; Akbarzadeh AM; Borazjani I
    Biomimetics (Basel); 2020 Mar; 5(1):. PubMed ID: 32138387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-propelled biohybrid swimmer at low Reynolds number.
    Williams BJ; Anand SV; Rajagopalan J; Saif MT
    Nat Commun; 2014; 5():3081. PubMed ID: 24435099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronisation through learning for two self-propelled swimmers.
    Novati G; Verma S; Alexeev D; Rossinelli D; van Rees WM; Koumoutsakos P
    Bioinspir Biomim; 2017 Mar; 12(3):036001. PubMed ID: 28355166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke.
    Takagi H; Nakashima M; Ozaki T; Matsuuchi K
    J Biomech; 2014 Apr; 47(6):1401-8. PubMed ID: 24524992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime.
    Li YH; Chen SC
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady hydrodynamic interaction between human swimmers.
    Yuan ZM; Li M; Ji CY; Li L; Jia L; Incecik A
    J R Soc Interface; 2019 Jan; 16(150):20180768. PubMed ID: 30958151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust.
    Gemmell BJ; Fogerson SM; Costello JH; Morgan JR; Dabiri JO; Colin SP
    J Exp Biol; 2016 Dec; 219(Pt 24):3884-3895. PubMed ID: 27974534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of the Hand During Freestyle Swimming.
    Cohen RC; Cleary PW; Mason BR; Pease DL
    J Biomech Eng; 2015 Nov; 137(11):111007. PubMed ID: 26372433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying the effects of asymmetry on freestyle swimming using smoothed particle hydrodynamics.
    Cohen RCZ; Cleary PW; Mason BR; Pease DL
    Comput Methods Biomech Biomed Engin; 2020 May; 23(7):271-284. PubMed ID: 32054321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.