These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32968744)

  • 1. Next-generation DNA damage sequencing.
    Mingard C; Wu J; McKeague M; Sturla SJ
    Chem Soc Rev; 2020 Oct; 49(20):7354-7377. PubMed ID: 32968744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-Resolution Genome-Wide Mapping of Oxidative DNA Damage by Click-Code-Seq.
    Wu J; McKeague M; Sturla SJ
    J Am Chem Soc; 2018 Aug; 140(31):9783-9787. PubMed ID: 29944356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sequence specificity of the anti-tumour drug, cisplatin, in telomeric DNA sequences compared with consecutive guanine DNA sequences.
    Murray V; Kandasamy N
    Anticancer Agents Med Chem; 2012 Mar; 12(3):177-81. PubMed ID: 22044000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of chromatin structure on cisplatin damage in intact human cells.
    Davies NP; Hardman LC; Murray V
    Nucleic Acids Res; 2000 Aug; 28(15):2954-8. PubMed ID: 10908359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base-Resolution Analysis of Cisplatin-DNA Adducts at the Genome Scale.
    Shu X; Xiong X; Song J; He C; Yi C
    Angew Chem Int Ed Engl; 2016 Nov; 55(46):14246-14249. PubMed ID: 27736024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodologies for detecting environmentally induced DNA damage and repair.
    Li W; Sancar A
    Environ Mol Mutagen; 2020 Aug; 61(7):664-679. PubMed ID: 32083352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RADAR-seq: A RAre DAmage and Repair sequencing method for detecting DNA damage on a genome-wide scale.
    Zatopek KM; Potapov V; Maduzia LL; Alpaslan E; Chen L; Evans TC; Ong JL; Ettwiller LM; Gardner AF
    DNA Repair (Amst); 2019 Aug; 80():36-44. PubMed ID: 31247470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of cisplatin 1,2-intrastrand guanine-guanine DNA adducts in human leukocytes by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry.
    Harrington CF; Le Pla RC; Jones GD; Thomas AL; Farmer PB
    Chem Res Toxicol; 2010 Aug; 23(8):1313-21. PubMed ID: 20666396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the SSBreakome: genome-wide mapping of DNA single-strand breaks by next-generation sequencing.
    Zilio N; Ulrich HD
    FEBS J; 2021 Jul; 288(13):3948-3961. PubMed ID: 32965079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide mapping of nucleotide excision repair with XR-seq.
    Hu J; Li W; Adebali O; Yang Y; Oztas O; Selby CP; Sancar A
    Nat Protoc; 2019 Jan; 14(1):248-282. PubMed ID: 30552409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AP-Seq: A Method to Measure Apurinic Sites and Small Base Adducts Genome-Wide.
    Poetsch AR
    Methods Mol Biol; 2020; 2175():95-108. PubMed ID: 32681486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution.
    Hu J; Lieb JD; Sancar A; Adar S
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11507-11512. PubMed ID: 27688757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cisplatin Analogues with an Increased Interaction with DNA: Prospects for Therapy.
    Hardie ME; Kava HW; Murray V
    Curr Pharm Des; 2016; 22(44):6645-6664. PubMed ID: 27587202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term, genome-wide kinetic analysis of the effect of the circadian clock and transcription on the repair of cisplatin-DNA adducts in the mouse liver.
    Yang Y; Liu Z; Selby CP; Sancar A
    J Biol Chem; 2019 Aug; 294(32):11960-11968. PubMed ID: 31217280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next-generation sequencing reveals the biological significance of the N(2),3-ethenoguanine lesion in vivo.
    Chang SC; Fedeles BI; Wu J; Delaney JC; Li D; Zhao L; Christov PP; Yau E; Singh V; Jost M; Drennan CL; Marnett LJ; Rizzo CJ; Levine SS; Guengerich FP; Essigmann JM
    Nucleic Acids Res; 2015 Jun; 43(11):5489-500. PubMed ID: 25837992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping of DNA nucleotide excision repair factors by nonrepairable carcinogen adducts.
    Buterin T; Hess MT; Gunz D; Geacintov NE; Mullenders LH; Naegeli H
    Cancer Res; 2002 Aug; 62(15):4229-35. PubMed ID: 12154024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and Quantitation of DNA Damage on a Genome-wide Scale Using RADAR-seq.
    Zatopek KM; Potapov V; Ong JL; Gardner AF
    Curr Protoc; 2022 Nov; 2(11):e595. PubMed ID: 36374013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cisplatin.
    Trimmer EE; Essigmann JM
    Essays Biochem; 1999; 34():191-211. PubMed ID: 10730196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent accumulation of unrepaired DNA damage in rat cortical neurons: nuclear organization and ChIP-seq analysis of damaged DNA.
    Mata-Garrido J; Tapia O; Casafont I; Berciano MT; Cuadrado A; Lafarga M
    Acta Neuropathol Commun; 2018 Jul; 6(1):68. PubMed ID: 30049290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic maps of UV damage formation and repair for the human genome.
    Hu J; Adebali O; Adar S; Sancar A
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):6758-6763. PubMed ID: 28607063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.