These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32968744)

  • 21. MADDD-seq, a novel massively parallel sequencing tool for simultaneous detection of DNA damage and mutations.
    Vermulst M; Paskvan SL; Chung CS; Franke K; Clegg N; Minot S; Madeoy J; Long AS; Gout JF; Bielas JH
    Nucleic Acids Res; 2024 Sep; 52(16):e76. PubMed ID: 39149908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BPDE-induced genotoxicity: relationship between DNA adducts, mutagenicity in the in vitro PIG-A assay, and the transcriptional response to DNA damage in TK6 cells.
    Piberger AL; Krüger CT; Strauch BM; Schneider B; Hartwig A
    Arch Toxicol; 2018 Jan; 92(1):541-551. PubMed ID: 28593498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circle Damage Sequencing for Whole-Genome Analysis of DNA Damage.
    Jin SG; Johnson J; Pfeifer GP
    Methods Mol Biol; 2023; 2660():247-262. PubMed ID: 37191802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A rare example of three abundant conformers in one retro model of the cisplatin-DNA d(GpG) intrastrand cross link. Unambiguous evidence that guanine O6 to carrier amine ligand hydrogen bonding is not important. possible effect of the Lippard base pair step adjacent to the lesion on carrier ligand hydrogen bonding in DNA adducts.
    Sullivan ST; Ciccarese A; Fanizzi FP; Marzilli LG
    J Am Chem Soc; 2001 Sep; 123(38):9345-55. PubMed ID: 11562217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Having a direct look: analysis of DNA damage and repair mechanisms by next generation sequencing.
    Meier B; Gartner A
    Exp Cell Res; 2014 Nov; 329(1):35-41. PubMed ID: 25131498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recognition of cisplatin adducts by cellular proteins.
    Kartalou M; Essigmann JM
    Mutat Res; 2001 Jul; 478(1-2):1-21. PubMed ID: 11406166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts.
    You C; Wang Y
    Acc Chem Res; 2016 Feb; 49(2):205-13. PubMed ID: 26758048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nick-seq for single-nucleotide resolution genomic maps of DNA modifications and damage.
    Cao B; Wu X; Zhou J; Wu H; Liu L; Zhang Q; DeMott MS; Gu C; Wang L; You D; Dedon PC
    Nucleic Acids Res; 2020 Jul; 48(12):6715-6725. PubMed ID: 32484547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Resolution Chromatin Immunoprecipitation: ChIP-Sequencing.
    Diaz RE; Sanchez A; Anton Le Berre V; Bouet JY
    Methods Mol Biol; 2017; 1624():61-73. PubMed ID: 28842876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cisplatin damage: are DNA repair proteins saviors or traitors to the cell?
    Zorbas H; Keppler BK
    Chembiochem; 2005 Jul; 6(7):1157-66. PubMed ID: 15934047
    [No Abstract]   [Full Text] [Related]  

  • 31. Genomic landscape of oxidative DNA damage and repair reveals regioselective protection from mutagenesis.
    Poetsch AR; Boulton SJ; Luscombe NM
    Genome Biol; 2018 Dec; 19(1):215. PubMed ID: 30526646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA adducts: endogenous and induced.
    Povey AC
    Toxicol Pathol; 2000; 28(3):405-14. PubMed ID: 10862557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA binding by antitumor trans-[PtCl2(NH3)(thiazole)]. Protein recognition and nucleotide excision repair of monofunctional adducts.
    Kasparkova J; Novakova O; Farrell N; Brabec V
    Biochemistry; 2003 Jan; 42(3):792-800. PubMed ID: 12534292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.
    Vitelli V; Galbiati A; Iannelli F; Pessina F; Sharma S; d'Adda di Fagagna F
    Annu Rev Genomics Hum Genet; 2017 Aug; 18():87-113. PubMed ID: 28859573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts.
    Reardon JT; Vaisman A; Chaney SG; Sancar A
    Cancer Res; 1999 Aug; 59(16):3968-71. PubMed ID: 10463593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular modeling of the intrastrand guanine-guanine DNA adducts produced by cisplatin and oxaliplatin.
    Scheeff ED; Briggs JM; Howell SB
    Mol Pharmacol; 1999 Sep; 56(3):633-43. PubMed ID: 10462551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nascent DNA sequencing and its diverse applications in genome integrity research.
    Paiano J; Nussenzweig A
    Methods Cell Biol; 2024; 182():67-81. PubMed ID: 38359988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of novel plasmid constructs to demonstrate fludarabine triphosphate inhibition of nucleotide excision repair of a site-specific 1,2-d(GpG) intrastrand cisplatin adduct.
    Li MJ; Yang LY
    Int J Oncol; 1999 Dec; 15(6):1177-83. PubMed ID: 10568825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Resolution Mapping of Modified DNA Nucleobases Using Excision Repair Enzymes.
    Ransom M; Bryan DS; Hesselberth JR
    Methods Mol Biol; 2018; 1672():63-76. PubMed ID: 29043617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From single-molecule to genome-wide mapping of DNA lesions: repair-assisted damage detection sequencing.
    Gilat N; Fridman D; Sharim H; Margalit S; Gassman NR; Michaeli Y; Ebenstein Y
    Biophys Rep (N Y); 2021 Dec; 1(2):None. PubMed ID: 34939047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.