BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32969292)

  • 1.
    Demir E
    Nanotoxicology; 2020 Nov; 14(9):1271-1279. PubMed ID: 32969292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hazard Assessment of the Effects of Acute and Chronic Exposure to Permethrin, Copper Hydroxide, Acephate, and Validamycin Nanopesticides on the Physiology of
    Demir E; Kansız S; Doğan M; Topel Ö; Akkoyunlu G; Kandur MY; Turna Demir F
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture.
    Mubeen I; Fawzi Bani Mfarrej M; Razaq Z; Iqbal S; Naqvi SAH; Hakim F; Mosa WFA; Moustafa M; Fang Y; Li B
    Plant Physiol Biochem; 2023 May; 198():107670. PubMed ID: 37018866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological nanopesticides: a greener approach towards the mosquito vector control.
    Mishra P; Tyagi BK; Chandrasekaran N; Mukherjee A
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10151-10163. PubMed ID: 28721618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotechnology in agriculture: a review of genotoxic studies of nanopesticides in animal cells.
    Paz-Trejo C; Flores-Márquez AR; Gómez-Arroyo S
    Environ Sci Pollut Res Int; 2023 May; 30(25):66473-66485. PubMed ID: 37115444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of nanopesticides and its toxicity evaluation through Drosophila model.
    Rehman MFU; Khan MM
    Bioprocess Biosyst Eng; 2024 Jan; 47(1):1-22. PubMed ID: 37993740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials.
    Demir E; Demir FT; Marcos R
    Adv Exp Med Biol; 2022; 1357():275-301. PubMed ID: 35583649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides.
    Grillo R; Fraceto LF; Amorim MJB; Scott-Fordsmand JJ; Schoonjans R; Chaudhry Q
    J Hazard Mater; 2021 Feb; 404(Pt A):124148. PubMed ID: 33059255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drosophila melanogaster as a model organism to study nanotoxicity.
    Ong C; Yung LY; Cai Y; Bay BH; Baeg GH
    Nanotoxicology; 2015 May; 9(3):396-403. PubMed ID: 25051331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conventional and nano-copper pesticides are equally toxic to the estuarine amphipod Leptocheirus plumulosus.
    Vignardi CP; Muller EB; Tran K; Couture JL; Means JC; Murray JLS; Ortiz C; Keller AA; Smith Sanchez N; Lenihan HS
    Aquat Toxicol; 2020 Jul; 224():105481. PubMed ID: 32380301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnology-based pesticides: Environmental fate and ecotoxicity.
    Ale A; Andrade VS; Gutierrez MF; Bacchetta C; Rossi AS; Orihuela PS; Desimone MF; Cazenave J
    Toxicol Appl Pharmacol; 2023 Jul; 471():116560. PubMed ID: 37230195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopesticide research: current trends and future priorities.
    Kah M; Hofmann T
    Environ Int; 2014 Feb; 63():224-35. PubMed ID: 24333990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Nanopesticides - Light or dark side of the force?].
    Matysiak M; Kruszewski M; Kapka-Skrzypczak L
    Med Pr; 2017 May; 68(3):423-432. PubMed ID: 28512369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and application of carrier-free and carrier-based nanopesticides in pest management.
    Dong W; Ren Y; Xue H
    Arch Insect Biochem Physiol; 2024 Jun; 116(2):e22124. PubMed ID: 38860794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives.
    Ali SS; Al-Tohamy R; Koutra E; Moawad MS; Kornaros M; Mustafa AM; Mahmoud YA; Badr A; Osman MEH; Elsamahy T; Jiao H; Sun J
    Sci Total Environ; 2021 Oct; 792():148359. PubMed ID: 34147795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological Risk Assessment of Nano-enabled Pesticides: A Perspective on Problem Formulation.
    Walker GW; Kookana RS; Smith NE; Kah M; Doolette CL; Reeves PT; Lovell W; Anderson DJ; Turney TW; Navarro DA
    J Agric Food Chem; 2018 Jul; 66(26):6480-6486. PubMed ID: 28812885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture.
    Camara MC; Campos EVR; Monteiro RA; do Espirito Santo Pereira A; de Freitas Proença PL; Fraceto LF
    J Nanobiotechnology; 2019 Sep; 17(1):100. PubMed ID: 31542052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila melanogaster as a dynamic in vivo model organism reveals the hidden effects of interactions between microplastic/nanoplastic and heavy metals.
    Demir E; Turna Demir F
    J Appl Toxicol; 2023 Feb; 43(2):212-219. PubMed ID: 35644834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophotoxicology: An Emerging Research Area for Assessing Nanoparticles Interaction with Living Organisms.
    Chifiriuc MC; Ratiu AC; Popa M; Ecovoiu AA
    Int J Mol Sci; 2016 Feb; 17(2):36. PubMed ID: 26907252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.