BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 32970051)

  • 1. Multiscale modelling reveals higher charge transport efficiencies of DNA relative to RNA independent of mechanism.
    Aggarwal A; Bag S; Venkatramani R; Jain M; Maiti PK
    Nanoscale; 2020 Sep; 12(36):18750-18760. PubMed ID: 32970051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling.
    Bao L; Zhang X; Shi YZ; Wu YY; Tan ZJ
    Biophys J; 2017 Mar; 112(6):1094-1104. PubMed ID: 28355538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remarkable similarity of force induced dsRNA conformational changes to stretched dsDNA and their detection using electrical measurements.
    Aggarwal A; Bag S; Maiti PK
    Phys Chem Chem Phys; 2018 Nov; 20(45):28920-28928. PubMed ID: 30422138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate tunnelling-hopping regime in DNA charge transport.
    Xiang L; Palma JL; Bruot C; Mujica V; Ratner MA; Tao N
    Nat Chem; 2015 Mar; 7(3):221-6. PubMed ID: 25698331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Charge Transport in Oligonucleotides: RNA:DNA Hybrids and DNA Duplexes.
    Li Y; Artés JM; Qi J; Morelan IA; Feldstein P; Anantram MP; Hihath J
    J Phys Chem Lett; 2016 May; 7(10):1888-94. PubMed ID: 27145167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations.
    Dong HL; Zhang C; Dai L; Zhang Y; Zhang XH; Tan ZJ
    Nucleic Acids Res; 2024 Mar; 52(5):2519-2529. PubMed ID: 38321947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA.
    Pabit SA; Qiu X; Lamb JS; Li L; Meisburger SP; Pollack L
    Nucleic Acids Res; 2009 Jul; 37(12):3887-96. PubMed ID: 19395592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level.
    Herrero-Galán E; Fuentes-Perez ME; Carrasco C; Valpuesta JM; Carrascosa JL; Moreno-Herrero F; Arias-Gonzalez JR
    J Am Chem Soc; 2013 Jan; 135(1):122-31. PubMed ID: 23214411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model.
    Aggarwal A; Vinayak V; Bag S; Bhattacharyya C; Waghmare UV; Maiti PK
    J Chem Inf Model; 2021 Jan; 61(1):106-114. PubMed ID: 33320660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics.
    Marin-Gonzalez A; Vilhena JG; Perez R; Moreno-Herrero F
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7049-7054. PubMed ID: 28634300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA.
    Lipfert J; Skinner GM; Keegstra JM; Hensgens T; Jager T; Dulin D; Köber M; Yu Z; Donkers SP; Chou FC; Das R; Dekker NH
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15408-13. PubMed ID: 25313077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-dependent mechanical properties of double-stranded RNA.
    Marin-Gonzalez A; Vilhena JG; Moreno-Herrero F; Perez R
    Nanoscale; 2019 Nov; 11(44):21471-21478. PubMed ID: 31686065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length, mass, and denaturation of double-stranded RNA molecules compared with DNA.
    Lang D; Steely HT; Kao CY; Ktistakis NT
    Biochim Biophys Acta; 1987 Dec; 910(3):271-81. PubMed ID: 3118956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule conductance of double-stranded RNA oligonucleotides.
    Chandra S; Gunasinghe Pattiya Arachchillage KG; Kliuchnikov E; Maksudov F; Ayoub S; Barsegov V; Artés Vivancos JM
    Nanoscale; 2022 Feb; 14(7):2572-2577. PubMed ID: 35107112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis.
    Liebl K; Drsata T; Lankas F; Lipfert J; Zacharias M
    Nucleic Acids Res; 2015 Dec; 43(21):10143-56. PubMed ID: 26464435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base-Pairing and Base-Stacking Contributions to Double-Stranded DNA Formation.
    Zacharias M
    J Phys Chem B; 2020 Nov; 124(46):10345-10352. PubMed ID: 33156627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel dependence of electrophoretic mobilities of double-stranded and viroid RNA and estimation of the contour length of a viroid by gel electrophoresis.
    Gast FU; Sänger HL
    Electrophoresis; 1994 Dec; 15(12):1493-8. PubMed ID: 7720685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA binding properties of novel gene silencing pyrrole-imidazole polyamides.
    Iguchi A; Fukuda N; Takahashi T; Watanabe T; Matsuda H; Nagase H; Bando T; Sugiyama H; Shimizu K
    Biol Pharm Bull; 2013; 36(7):1152-8. PubMed ID: 23628892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Prediction of DNA Charge Transport.
    Korol R; Segal D
    J Phys Chem B; 2019 Apr; 123(13):2801-2811. PubMed ID: 30865456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dramatic changes in DNA conductance with stretching: structural polymorphism at a critical extension.
    Bag S; Mogurampelly S; Goddard WA; Maiti PK
    Nanoscale; 2016 Sep; 8(35):16044-52. PubMed ID: 27545499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.