BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32970325)

  • 1. Water calorimetry in MR-linac: Direct measurement of absorbed dose and determination of chamber
    D'Souza M; Nusrat H; Iakovenko V; Keller B; Sahgal A; Renaud J; Sarfehnia A
    Med Phys; 2020 Dec; 47(12):6458-6469. PubMed ID: 32970325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental measurement of ionization chamber angular response and associated magnetic field correction factors in MR-linac.
    Iakovenko V; Keller B; Sahgal A; Sarfehnia A
    Med Phys; 2020 Apr; 47(4):1940-1948. PubMed ID: 31955432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental determination of magnetic field quality conversion factors for eleven ionization chambers in 1.5 T and 0.35 T MR-linac systems.
    Orlando N; Crosby J; Glide-Hurst C; Culberson W; Keller B; Sarfehnia A
    Med Phys; 2024 Apr; 51(4):2998-3009. PubMed ID: 38060696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-stage validation of a portable imageable MR-compatible water calorimeter.
    D'Souza M; Nusrat H; Renaud J; Peterson G; Sarfehnia A
    Med Phys; 2020 Oct; 47(10):5312-5323. PubMed ID: 32786081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute dosimetry of a 1.5 T MR-guided accelerator-based high-energy photon beam in water and solid phantoms using Aerrow.
    Renaud J; Sarfehnia A; Bancheri J; Seuntjens J
    Med Phys; 2020 Mar; 47(3):1291-1304. PubMed ID: 31834640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying uncertainties associated with reference dosimetry in an MR-Linac.
    Iakovenko V; Keller B; Malkov VN; Sahgal A; Sarfehnia A
    J Appl Clin Med Phys; 2023 Nov; 24(11):e14087. PubMed ID: 37354202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and Monte Carlo-based determination of magnetic field correction factors
    Alissa M; Zink K; Kapsch RP; Schoenfeld AA; Frick S; Czarnecki D
    Med Phys; 2023 Jul; 50(7):4578-4589. PubMed ID: 36897832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct determination of [Formula: see text] for cylindrical ionization chambers in a 6 MV 0.35 T MR-linac.
    Krauss A; Spindeldreier CK; Klüter S
    Phys Med Biol; 2020 Dec; 65(23):235049. PubMed ID: 33300501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of ion chamber correction factors, k
    de Prez L; Woodings S; de Pooter J; van Asselen B; Wolthaus J; Jansen B; Raaymakers B
    Phys Med Biol; 2019 May; 64(10):105025. PubMed ID: 30933939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron beam water calorimetry measurements to obtain beam quality conversion factors.
    Muir BR; Cojocaru CD; McEwen MR; Ross CK
    Med Phys; 2017 Oct; 44(10):5433-5444. PubMed ID: 28688120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the construction and sensitive volume of compact ionization chambers on the magnetic field-dependent dose response.
    Delfs B; Blum I; Tekin T; Schönfeld AB; Kranzer R; Poppinga D; Giesen U; Langner F; Kapsch RP; Poppe B; Looe HK
    Med Phys; 2021 Aug; 48(8):4572-4585. PubMed ID: 34032298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerrow: A probe-format graphite calorimeter for absolute dosimetry of high-energy photon beams in the clinical environment.
    Renaud J; Sarfehnia A; Bancheri J; Seuntjens J
    Med Phys; 2018 Jan; 45(1):414-428. PubMed ID: 29131344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton dosimetry in a magnetic field: Measurement and calculation of magnetic field correction factors for a plane-parallel ionization chamber.
    Gebauer B; Baumann KS; Fuchs H; Georg D; Oborn BM; Looe HK; Lühr A
    Med Phys; 2024 Mar; 51(3):2293-2305. PubMed ID: 37898105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetry in 1.5 T MR-Linacs: Monte Carlo determination of magnetic field correction factors and investigation of the air gap effect.
    Margaroni V; Pappas EP; Episkopakis A; Pantelis E; Papagiannis P; Marinos N; Karaiskos P
    Med Phys; 2023 Feb; 50(2):1132-1148. PubMed ID: 36349535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical Note: Consistency of PTW30013 and FC65-G ion chamber magnetic field correction factors.
    Woodings SJ; van Asselen B; van Soest TL; de Prez LA; Lagendijk JJW; Raaymakers BW; Wolthaus JWH
    Med Phys; 2019 Aug; 46(8):3739-3745. PubMed ID: 31131902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction factors for A1SL ionization chamber dosimetry in TomoTherapy: machine-specific, plan-class, and clinical fields.
    Gago-Arias A; Rodriguez-Romero R; Sanchez-Rubio P; Miguel Gonzalez-Castano D; Gomez F; Nunez L; Palmans H; Sharpe P; Pardo-Montero J
    Med Phys; 2012 Apr; 39(4):1964-70. PubMed ID: 22482617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VMAT and IMRT plan-specific correction factors for linac-based ionization chamber dosimetry.
    Desai VK; Labby ZE; Hyun MA; DeWerd LA; Culberson WS
    Med Phys; 2019 Feb; 46(2):913-924. PubMed ID: 30449040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of magnetic field correction factors for ionization chambers in parallel and perpendicular orientations.
    Pojtinger S; Nachbar M; Ghandour S; Pisaturo O; Pachoud M; Kapsch RP; Thorwarth D
    Phys Med Biol; 2020 Dec; 65(24):245044. PubMed ID: 33181493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.
    Harty PD; Lye JE; Ramanathan G; Butler DJ; Hall CJ; Stevenson AW; Johnston PN
    Med Phys; 2014 May; 41(5):052101. PubMed ID: 24784390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An absolute dose determination of helical tomotherapy accelerator, TomoTherapy High-Art II.
    Bailat CJ; Buchillier T; Pachoud M; Moeckli R; Bochud FO
    Med Phys; 2009 Sep; 36(9):3891-6. PubMed ID: 19810461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.