BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32970420)

  • 1. Hydroxylamine Complexes of Cytochrome
    Brown BN; Robinson KJ; Durfee QC; Kekilli D; Hough MA; Andrew CR
    Inorg Chem; 2020 Oct; 59(19):14162-14170. PubMed ID: 32970420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing Nitro vs Nitrito Coordination in Cytochrome c' Using Vibrational Spectroscopy and Density Functional Theory.
    Nilsson ZN; Mandella BL; Sen K; Kekilli D; Hough MA; Moënne-Loccoz P; Strange RW; Andrew CR
    Inorg Chem; 2017 Nov; 56(21):13205-13213. PubMed ID: 29053273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman Spectra of Five-Coordinate Heme-Nitrosyl Cytochromes c': Effect of the Proximal Heme-NO Environment.
    Servid AE; McKay AL; Davis CA; Garton EM; Manole A; Dobbin PS; Hough MA; Andrew CR
    Biochemistry; 2015 Jun; 54(21):3320-7. PubMed ID: 25961377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessibility of the distal heme face, rather than Fe-His bond strength, determines the heme-nitrosyl coordination number of cytochromes c': evidence from spectroscopic studies.
    Andrew CR; Kemper LJ; Busche TL; Tiwari AM; Kecskes MC; Stafford JM; Croft LC; Lu S; Moënne-Loccoz P; Huston W; Moir JW; Eady RR
    Biochemistry; 2005 Jun; 44(24):8664-72. PubMed ID: 15952773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme P460: A (Cross) Link to Nitric Oxide.
    Coleman RE; Lancaster KM
    Acc Chem Res; 2020 Dec; 53(12):2925-2935. PubMed ID: 33180458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for nitric oxide dynamics and affinity with Alcaligenes xylosoxidans cytochrome c.
    Kruglik SG; Lambry JC; Cianetti S; Martin JL; Eady RR; Andrew CR; Negrerie M
    J Biol Chem; 2007 Feb; 282(7):5053-5062. PubMed ID: 17158883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Dynamics Behind the Affinity: Controlling Heme-Gas Affinity via Geminate Recombination and Heme Propionate Conformation in the NO Carrier Cytochrome c'.
    Andrew CR; Petrova ON; Lamarre I; Lambry JC; Rappaport F; Negrerie M
    ACS Chem Biol; 2016 Nov; 11(11):3191-3201. PubMed ID: 27709886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation parameters for heme-NO binding in alcaligenes xylosoxidans cytochrome c': the putative dinitrosyl intermediate forms via a dissociative mechanism.
    Pixton DA; Petersen CA; Franke A; van Eldik R; Garton EM; Andrew CR
    J Am Chem Soc; 2009 Apr; 131(13):4846-53. PubMed ID: 19334778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Six- to five-coordinate heme-nitrosyl conversion in cytochrome c' and its relevance to guanylate cyclase.
    Andrew CR; George SJ; Lawson DM; Eady RR
    Biochemistry; 2002 Feb; 41(7):2353-60. PubMed ID: 11841228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A distal pocket Leu residue inhibits the binding of O2 and NO at the distal heme site of cytochrome c'.
    Garton EM; Pixton DA; Petersen CA; Eady RR; Hasnain SS; Andrew CR
    J Am Chem Soc; 2012 Jan; 134(3):1461-3. PubMed ID: 22239663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions of spinach nitrite reductase with its substrate, nitrite, and a putative intermediate, hydroxylamine.
    Kuznetsova S; Knaff DB; Hirasawa M; Sétif P; Mattioli TA
    Biochemistry; 2004 Aug; 43(33):10765-74. PubMed ID: 15311938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction with cyanide of hydroxylamine oxidoreductase of Nitrosomonas europaea.
    Logan MS; Balny C; Hooper AB
    Biochemistry; 1995 Jul; 34(28):9028-37. PubMed ID: 7619802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of reduction by substrate or dithionite and heme-heme electron transfer in the multiheme hydroxylamine oxidoreductase.
    Hooper AB; Tran VM; Balny C
    Eur J Biochem; 1984 Jun; 141(3):565-71. PubMed ID: 6745259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme-Heme Interactions in Diheme Cytochromes: Effect of Mixed-Axial Ligation on the Electronic Structure and Electrochemical Properties.
    Khan FST; Samanta D; Chandel D; Shah SJ; Rath SP
    Inorg Chem; 2021 Sep; 60(17):12870-12882. PubMed ID: 34370470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylamine-induced oxidation of ferrous nitrobindins.
    De Simone G; Tundo GR; Coletta A; Coletta M; Ascenzi P
    J Biol Inorg Chem; 2022 Aug; 27(4-5):443-453. PubMed ID: 35543759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission.
    Caranto JD; Vilbert AC; Lancaster KM
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14704-14709. PubMed ID: 27856762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman studies of cytochrome c' support the binding of NO and CO to opposite sides of the heme: implications for ligand discrimination in heme-based sensors.
    Andrew CR; Green EL; Lawson DM; Eady RR
    Biochemistry; 2001 Apr; 40(13):4115-22. PubMed ID: 11300792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved infrared spectroscopy reveals a stable ferric heme-NO intermediate in the reaction of Paracoccus pantotrophus cytochrome cd1 nitrite reductase with nitrite.
    George SJ; Allen JW; Ferguson SJ; Thorneley RN
    J Biol Chem; 2000 Oct; 275(43):33231-7. PubMed ID: 10922371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.