These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32970438)

  • 1. Deciphering the Allosteric Process of the
    Tian H; Trozzi F; Zoltowski BD; Tao P
    J Phys Chem B; 2020 Oct; 124(41):8960-8972. PubMed ID: 32970438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of a Native-like Aureochrome 1a LOV Domain Dimer from Phaeodactylum tricornutum.
    Banerjee A; Herman E; Kottke T; Essen LO
    Structure; 2016 Jan; 24(1):171-178. PubMed ID: 26688213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence.
    Heintz U; Schlichting I
    Elife; 2016 Jan; 5():e11860. PubMed ID: 26754770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Optogenetic Tool for Induced Protein Stabilization Based on the Phaeodactylum tricornutum Aureochrome 1a Light-Oxygen-Voltage Domain.
    Hepp S; Trauth J; Hasenjäger S; Bezold F; Essen LO; Taxis C
    J Mol Biol; 2020 Mar; 432(7):1880-1900. PubMed ID: 32105734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosterically regulated unfolding of the A'α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain.
    Herman E; Kottke T
    Biochemistry; 2015 Feb; 54(7):1484-92. PubMed ID: 25621532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the diatom Phaeodactylum tricornutum.
    Herman E; Sachse M; Kroth PG; Kottke T
    Biochemistry; 2013 May; 52(18):3094-101. PubMed ID: 23621750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes.
    Banerjee A; Herman E; Serif M; Maestre-Reyna M; Hepp S; Pokorny R; Kroth PG; Essen LO; Kottke T
    Nucleic Acids Res; 2016 Jul; 44(12):5957-70. PubMed ID: 27179025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-cell infrared difference spectroscopy of LOV photoreceptors reveals structural responses to light altered in living cells.
    Goett-Zink L; Klocke JL; Bögeholz LAK; Kottke T
    J Biol Chem; 2020 Aug; 295(33):11729-11741. PubMed ID: 32580943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis.
    Zhou H; Dong Z; Verkhivker G; Zoltowski BD; Tao P
    PLoS Comput Biol; 2019 Feb; 15(2):e1006801. PubMed ID: 30779735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ivis Dimensionality Reduction Framework for Biomacromolecular Simulations.
    Tian H; Tao P
    J Chem Inf Model; 2020 Oct; 60(10):4569-4581. PubMed ID: 32820912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An update on aureochromes: Phylogeny - mechanism - function.
    Kroth PG; Wilhelm C; Kottke T
    J Plant Physiol; 2017 Oct; 217():20-26. PubMed ID: 28797596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light.
    Zhang H; Xiong X; Guo K; Zheng M; Cao T; Yang Y; Song J; Cen J; Zhang J; Jiang Y; Feng S; Tian L; Li X
    Nat Commun; 2024 Jul; 15(1):5578. PubMed ID: 38956103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum.
    Schellenberger Costa B; Sachse M; Jungandreas A; Bartulos CR; Gruber A; Jakob T; Kroth PG; Wilhelm C
    PLoS One; 2013; 8(9):e74451. PubMed ID: 24073211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of promoter targets by Aureochrome 1a in the diatom Phaeodactylum tricornutum.
    Im SH; Lepetit B; Mosesso N; Shrestha S; Weiss L; Nymark M; Roellig R; Wilhelm C; Isono E; Kroth PG
    J Exp Bot; 2024 Mar; 75(7):1834-1851. PubMed ID: 38066674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional demonstration of Aureochrome 1a proteasomal degradation after blue light incubation in the diatom Phaeodactylum tricornutum.
    Im SH; Madhuri S; Lepetit B; Kroth PG
    J Plant Physiol; 2024 Jan; 292():154148. PubMed ID: 38101100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Aureochrome Photoreceptor PtAUREO1a Is a Highly Effective Blue Light Switch in Diatoms.
    Mann M; Serif M; Wrobel T; Eisenhut M; Madhuri S; Flachbart S; Weber APM; Lepetit B; Wilhelm C; Kroth PG
    iScience; 2020 Nov; 23(11):101730. PubMed ID: 33235981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimeric allostery mechanism of the plant circadian clock photoreceptor ZEITLUPE.
    Trozzi F; Wang F; Verkhivker G; Zoltowski BD; Tao P
    PLoS Comput Biol; 2021 Jul; 17(7):e1009168. PubMed ID: 34310591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PtAUREO1a and PtAUREO1b knockout mutants of the diatom Phaeodactylum tricornutum are blocked in photoacclimation to blue light.
    Mann M; Serif M; Jakob T; Kroth PG; Wilhelm C
    J Plant Physiol; 2017 Oct; 217():44-48. PubMed ID: 28610707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study.
    Bannister S; Böhm E; Zinn T; Hellweg T; Kottke T
    Struct Dyn; 2019 May; 6(3):034701. PubMed ID: 31263739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study on the signal transduction process of bacterial photoreceptor PpSB1 based on the Markov state model.
    Zhao Y; Zhang Y; Sun M; Zheng Q
    Phys Chem Chem Phys; 2021 Jan; 23(3):2398-2405. PubMed ID: 33458728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.