These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32970446)

  • 1. Mapping the Viscoelastic Heterogeneity at the Nanoscale in Metallic Glasses by Static Force Spectroscopy.
    Gao M; Perepezko JH
    Nano Lett; 2020 Oct; 20(10):7558-7565. PubMed ID: 32970446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy.
    Liu YH; Wang D; Nakajima K; Zhang W; Hirata A; Nishi T; Inoue A; Chen MW
    Phys Rev Lett; 2011 Mar; 106(12):125504. PubMed ID: 21517325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses.
    Zhu F; Song S; Reddy KM; Hirata A; Chen M
    Nat Commun; 2018 Sep; 9(1):3965. PubMed ID: 30262846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Viscoelastic Properties and Interfaces in High-Density Polyethylene Vitrimers at the Nanoscale Using Dynamic Mode Atomic Force Microscopy.
    Yang L; Nickmilder P; Verhoogt H; Hoeks T; Leclère P
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38993000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling Nanoscale Elastic and Adhesive Properties at the Nanoparticle/Epoxy Interface Using Bimodal Atomic Force Microscopy.
    Nguyen HK; Shundo A; Liang X; Yamamoto S; Tanaka K; Nakajima K
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42713-42722. PubMed ID: 36070235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.
    Cartagena A; Raman A
    Biophys J; 2014 Mar; 106(5):1033-43. PubMed ID: 24606928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass.
    Zhu F; Nguyen HK; Song SX; Aji DP; Hirata A; Wang H; Nakajima K; Chen MW
    Nat Commun; 2016 May; 7():11516. PubMed ID: 27158084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy.
    Rajabifar B; Bajaj A; Reifenberger R; Proksch R; Raman A
    Nanoscale; 2021 Oct; 13(41):17428-17441. PubMed ID: 34647552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM.
    Benaglia S; Amo CA; Garcia R
    Nanoscale; 2019 Aug; 11(32):15289-15297. PubMed ID: 31386741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural instability of metallic glasses under radio-frequency-ultrasonic perturbation and its correlation with glass-to-crystal transition of less-stable metallic glasses.
    Ichitsubo T; Matsubara E; Chen HS; Saida J; Yamamoto T; Nishiyama N
    J Chem Phys; 2006 Oct; 125(15):154502. PubMed ID: 17059267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the Nanoscale Heterogeneous Responses in the Dynamic Acceleration of Deformed Polymer Glasses.
    Nguyen HK; Pittenger B; Nakajima K
    Nano Lett; 2024 Jul; ():. PubMed ID: 39017745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping cellular nanoscale viscoelasticity and relaxation times relevant to growth of living Arabidopsis thaliana plants using multifrequency AFM.
    Seifert J; Kirchhelle C; Moore I; Contera S
    Acta Biomater; 2021 Feb; 121():371-382. PubMed ID: 33309827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy.
    Parvini CH; Saadi MASR; Solares SD
    Beilstein J Nanotechnol; 2020; 11():922-937. PubMed ID: 32596096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling.
    Liu WH; Sun BA; Gleiter H; Lan S; Tong Y; Wang XL; Hahn H; Yang Y; Kai JJ; Liu CT
    Nano Lett; 2018 Jul; 18(7):4188-4194. PubMed ID: 29869884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses.
    Li W; Gao Y; Bei H
    Sci Rep; 2015 Oct; 5():14786. PubMed ID: 26435318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Rheology: Dynamic Mechanical Analysis over a Broad and Continuous Frequency Range Using Photothermal Actuation Atomic Force Microscopy.
    Piacenti AR; Adam C; Hawkins N; Wagner R; Seifert J; Taniguchi Y; Proksch R; Contera S
    Macromolecules; 2024 Feb; 57(3):1118-1127. PubMed ID: 38370912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Visualization of Local Spin Transition Behaviors in Thin Molecular Films by Bimodal AFM.
    Shalabaeva V; Bas AC; Piedrahita-Bello M; Ridier K; Salmon L; Thibault C; Nicolazzi W; Molnár G; Bousseksou A
    Small; 2019 Nov; 15(47):e1903892. PubMed ID: 31617319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid-Liquid Interface.
    Churnside AB; Tung RC; Killgore JP
    Langmuir; 2015 Oct; 31(40):11143-9. PubMed ID: 26426705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.