BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32970668)

  • 1. Buffering and total calcium levels determine the presence of oscillatory regimes in cardiac cells.
    Marchena M; Echebarria B; Shiferaw Y; Alvarez-Lacalle E
    PLoS Comput Biol; 2020 Sep; 16(9):e1007728. PubMed ID: 32970668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calsequestrin mediates changes in spontaneous calcium release profiles.
    Tania N; Keener JP
    J Theor Biol; 2010 Aug; 265(3):359-76. PubMed ID: 20648970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A calcium-induced calcium release mechanism mediated by calsequestrin.
    Lee YS; Keener JP
    J Theor Biol; 2008 Aug; 253(4):668-79. PubMed ID: 18538346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.
    Györke I; Hester N; Jones LR; Györke S
    Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calsequestrin-mediated mechanism for cellular calcium transient alternans.
    Restrepo JG; Weiss JN; Karma A
    Biophys J; 2008 Oct; 95(8):3767-89. PubMed ID: 18676655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein protein interactions between triadin and calsequestrin are involved in modulation of sarcoplasmic reticulum calcium release in cardiac myocytes.
    Terentyev D; Viatchenko-Karpinski S; Vedamoorthyrao S; Oduru S; Györke I; Williams SC; Györke S
    J Physiol; 2007 Aug; 583(Pt 1):71-80. PubMed ID: 17569730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of SR Ca2+ release by the triadin-to-calsequestrin ratio in ventricular myocytes.
    Kučerová D; Baba HA; Bokník P; Fabritz L; Heinick A; Mát'uš M; Müller FU; Neumann J; Schmitz W; Kirchhefer U
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2008-17. PubMed ID: 22427521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dantrolene sodium increases calcium binding by human recombinant cardiac calsequestrin and calcium loading by sheep cardiac sarcoplasmic reticulum.
    Loescher CM; Gibson LM; Stephenson DG
    Acta Physiol (Oxf); 2019 Jul; 226(3):e13261. PubMed ID: 30710413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of ryanodine receptor after ischemia-reperfusion increases propensity of Ca
    Bovo E; Mazurek SR; Zima AV
    Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H1032-H1040. PubMed ID: 30028204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrograde activation of store-operated calcium channel.
    Ma J; Pan Z
    Cell Calcium; 2003; 33(5-6):375-84. PubMed ID: 12765683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcoplasmic Reticulum Structure and Functional Properties that Promote Long-Lasting Calcium Sparks.
    Sato D; Shannon TR; Bers DM
    Biophys J; 2016 Jan; 110(2):382-390. PubMed ID: 26789761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release.
    Wang X; Weinberg SH; Hao Y; Sobie EA; Smith GD
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(5):H510-23. PubMed ID: 25485896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of sarcoplasmic reticulum Ca(2+) release by cytosolic glutathione in rabbit ventricular myocytes.
    Mazurek SR; Bovo E; Zima AV
    Free Radic Biol Med; 2014 Mar; 68():159-67. PubMed ID: 24334252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarcoplasmic reticulum Ca2+ release in neonatal rat cardiac myocytes.
    Gergs U; Kirchhefer U; Buskase J; Kiele-Dunsche K; Buchwalow IB; Jones LR; Schmitz W; Traub O; Neumann J
    J Mol Cell Cardiol; 2011 Nov; 51(5):682-8. PubMed ID: 21871897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with a mathematical model.
    Shannon TR; Wang F; Bers DM
    Biophys J; 2005 Dec; 89(6):4096-110. PubMed ID: 16169970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.
    Dries E; Santiago DJ; Johnson DM; Gilbert G; Holemans P; Korte SM; Roderick HL; Sipido KR
    J Physiol; 2016 Oct; 594(20):5923-5939. PubMed ID: 27121757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.