These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32970751)

  • 1. The influence of footwear on walking biomechanics in individuals with chronic ankle instability.
    Moisan G; Descarreaux M; Cantin V
    PLoS One; 2020; 15(9):e0239621. PubMed ID: 32970751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic, kinetic and electromyographic differences between young adults with and without chronic ankle instability during walking.
    Moisan G; Mainville C; Descarreaux M; Cantin V
    J Electromyogr Kinesiol; 2020 Apr; 51():102399. PubMed ID: 32028104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower limb biomechanics in individuals with chronic ankle instability during gait: a case-control study.
    Moisan G; Mainville C; Descarreaux M; Cantin V
    J Foot Ankle Res; 2021 May; 14(1):36. PubMed ID: 33941223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical effects of foot orthoses with and without a lateral bar in individuals with cavus feet during comfortable and fast walking.
    Moisan G; Descarreaux M; Cantin V
    PLoS One; 2021; 16(3):e0248658. PubMed ID: 33730084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower Limb Biomechanics During Drop-Jump Landings on Challenging Surfaces in Individuals With Chronic Ankle Instability.
    Moisan G; Mainville C; Descarreaux M; Cantin V
    J Athl Train; 2022 Nov; 57(11-12):1039-1047. PubMed ID: 35090022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ankle and foot mechanics in individuals with chronic ankle instability during shod walking and barefoot walking: A cross-sectional study.
    Abdelraouf OR; Abdel-Aziem AA
    Chin J Traumatol; 2021 May; 24(3):174-179. PubMed ID: 33757697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of foot orthoses on walking and jump landing biomechanics of individuals with chronic ankle instability.
    Moisan G; Mainville C; Descarreaux M; Cantin V
    Phys Ther Sport; 2019 Nov; 40():53-58. PubMed ID: 31476698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower extremity muscle activation in patients with or without chronic ankle instability during walking.
    Feger MA; Donovan L; Hart JM; Hertel J
    J Athl Train; 2015 Apr; 50(4):350-7. PubMed ID: 25562453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait kinematics & kinetics at three walking speeds in individuals with chronic ankle instability and ankle sprain copers.
    Koldenhoven RM; Hart J; Saliba S; Abel MF; Hertel J
    Gait Posture; 2019 Oct; 74():169-175. PubMed ID: 31525655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle-Activation Onset Times With Shoes and Foot Orthoses in Participants With Chronic Ankle Instability.
    Dingenen B; Peeraer L; Deschamps K; Fieuws S; Janssens L; Staes F
    J Athl Train; 2015 Jul; 50(7):688-96. PubMed ID: 25856056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical analysis of gait waveform data: exploring differences between shod and barefoot running in habitually shod runners.
    Tam N; Prins D; Divekar NV; Lamberts RP
    Gait Posture; 2017 Oct; 58():274-279. PubMed ID: 28837918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full gait cycle analysis of lower limb and trunk kinematics and muscle activations during walking in participants with and without ankle instability.
    Northeast L; Gautrey CN; Bottoms L; Hughes G; Mitchell ACS; Greenhalgh A
    Gait Posture; 2018 Jul; 64():114-118. PubMed ID: 29902713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered Walking Neuromechanics in Patients With Chronic Ankle Instability.
    Son SJ; Kim H; Seeley MK; Hopkins JT
    J Athl Train; 2019 Jun; 54(6):684-697. PubMed ID: 31162941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of 2 ankle destabilization devices on electromyography measures during functional exercises in individuals with chronic ankle instability.
    Donovan L; Hart JM; Hertel J
    J Orthop Sports Phys Ther; 2015 Mar; 45(3):220-32. PubMed ID: 25627150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of lower limb EMG and ground reaction forces between barefoot and shod gait in participants with diabetic neuropathic and healthy controls.
    Sacco IC; Akashi PM; Hennig EM
    BMC Musculoskelet Disord; 2010 Feb; 11():24. PubMed ID: 20128894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers.
    Chen TL; Wong DW; Xu Z; Tan Q; Wang Y; Luximon A; Zhang M
    PLoS One; 2018; 13(3):e0193653. PubMed ID: 29561862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of Running Biomechanics to Repeated Barefoot Running: A Randomized Controlled Study.
    Hollander K; Liebl D; Meining S; Mattes K; Willwacher S; Zech A
    Am J Sports Med; 2019 Jul; 47(8):1975-1983. PubMed ID: 31166116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-limb asymmetry of kinetic and electromyographic during walking in patients with chronic ankle instability.
    Tajdini H; Mantashloo Z; Thomas AC; Letafatkar A; Rossettini G
    Sci Rep; 2022 Mar; 12(1):3928. PubMed ID: 35273300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical implications of walking with indigenous footwear.
    Willems C; Stassijns G; Cornelis W; D'Août K
    Am J Phys Anthropol; 2017 Apr; 162(4):782-793. PubMed ID: 28101944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.