These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32970838)
1. 3D tumor detection in automated breast ultrasound using deep convolutional neural network. Li Y; Wu W; Chen H; Cheng L; Wang S Med Phys; 2020 Nov; 47(11):5669-5680. PubMed ID: 32970838 [TBL] [Abstract][Full Text] [Related]
2. Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and Prioritized Candidate Aggregation. Chiang TC; Huang YS; Chen RT; Huang CS; Chang RF IEEE Trans Med Imaging; 2019 Jan; 38(1):240-249. PubMed ID: 30059297 [TBL] [Abstract][Full Text] [Related]
3. 3D Inception U-net with Asymmetric Loss for Cancer Detection in Automated Breast Ultrasound. Wang Y; Qin C; Lin C; Lin D; Xu M; Luo X; Wang T; Li A; Ni D Med Phys; 2020 Nov; 47(11):5582-5591. PubMed ID: 33459385 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided tumor detection in automated breast ultrasound using a 3-D convolutional neural network. Moon WK; Huang YS; Hsu CH; Chang Chien TY; Chang JM; Lee SH; Huang CS; Chang RF Comput Methods Programs Biomed; 2020 Jul; 190():105360. PubMed ID: 32007838 [TBL] [Abstract][Full Text] [Related]
5. Tumor segmentation in automated whole breast ultrasound using bidirectional LSTM neural network and attention mechanism. Pan P; Chen H; Li Y; Cai N; Cheng L; Wang S Ultrasonics; 2021 Feb; 110():106271. PubMed ID: 33166786 [TBL] [Abstract][Full Text] [Related]
6. Deeply-Supervised Networks With Threshold Loss for Cancer Detection in Automated Breast Ultrasound. Wang Y; Wang N; Xu M; Yu J; Qin C; Luo X; Yang X; Wang T; Li A; Ni D IEEE Trans Med Imaging; 2020 Apr; 39(4):866-876. PubMed ID: 31442972 [TBL] [Abstract][Full Text] [Related]
7. Mass detection in automated three dimensional breast ultrasound using cascaded convolutional neural networks. Barekatrezaei S; Kozegar E; Salamati M; Soryani M Phys Med; 2024 Aug; 124():103433. PubMed ID: 39002423 [TBL] [Abstract][Full Text] [Related]
8. Tumor detection in automated breast ultrasound images using quantitative tissue clustering. Moon WK; Lo CM; Chen RT; Shen YW; Chang JM; Huang CS; Chen JH; Hsu WW; Chang RF Med Phys; 2014 Apr; 41(4):042901. PubMed ID: 24694157 [TBL] [Abstract][Full Text] [Related]
9. Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed. Lo CM; Chen RT; Chang YC; Yang YW; Hung MJ; Huang CS; Chang RF IEEE Trans Med Imaging; 2014 Jul; 33(7):1503-11. PubMed ID: 24718570 [TBL] [Abstract][Full Text] [Related]
10. Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning. Wang Y; Choi EJ; Choi Y; Zhang H; Jin GY; Ko SB Ultrasound Med Biol; 2020 May; 46(5):1119-1132. PubMed ID: 32059918 [TBL] [Abstract][Full Text] [Related]
11. Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R-CNN. Lei Y; He X; Yao J; Wang T; Wang L; Li W; Curran WJ; Liu T; Xu D; Yang X Med Phys; 2021 Jan; 48(1):204-214. PubMed ID: 33128230 [TBL] [Abstract][Full Text] [Related]
12. Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network. Hejduk P; Marcon M; Unkelbach J; Ciritsis A; Rossi C; Borkowski K; Boss A Eur Radiol; 2022 Jul; 32(7):4868-4878. PubMed ID: 35147776 [TBL] [Abstract][Full Text] [Related]
13. Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images. Moon WK; Shen YW; Bae MS; Huang CS; Chen JH; Chang RF IEEE Trans Med Imaging; 2013 Jul; 32(7):1191-200. PubMed ID: 23232413 [TBL] [Abstract][Full Text] [Related]
14. Auto-DenseUNet: Searchable neural network architecture for mass segmentation in 3D automated breast ultrasound. Cao X; Chen H; Li Y; Peng Y; Zhou Y; Cheng L; Liu T; Shen D Med Image Anal; 2022 Nov; 82():102589. PubMed ID: 36095905 [TBL] [Abstract][Full Text] [Related]
15. New one-step model of breast tumor locating based on deep learning. Tao C; Chen K; Han L; Peng Y; Li C; Hua Z; Lin J J Xray Sci Technol; 2019; 27(5):839-856. PubMed ID: 31306148 [TBL] [Abstract][Full Text] [Related]
16. Improved mass detection in 3D automated breast ultrasound using region based features and multi-view information. Ye C; Vaidya V; Zhao F Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2865-8. PubMed ID: 25570589 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided detection of breast cancers using Haar-like features in automated 3D breast ultrasound. Tan T; Mordang JJ; van Zelst J; Grivegnée A; Gubern-Mérida A; Melendez J; Mann RM; Zhang W; Platel B; Karssemeijer N Med Phys; 2015 Apr; 42(4):1498-504. PubMed ID: 25832040 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional automated breast ultrasound: Technical aspects and first results. Vourtsis A Diagn Interv Imaging; 2019 Oct; 100(10):579-592. PubMed ID: 30962169 [TBL] [Abstract][Full Text] [Related]
19. A 2-Phase Merge Filter Approach to Computer-Aided Detection of Breast Tumors on 3-Dimensional Ultrasound Imaging. Chiu LY; Kuo WH; Chen CN; Chang KJ; Chen A J Ultrasound Med; 2020 Dec; 39(12):2439-2455. PubMed ID: 32567133 [TBL] [Abstract][Full Text] [Related]
20. Mass detection in automated 3-D breast ultrasound using a patch Bi-ConvLSTM network. Malekmohammadi A; Barekatrezaei S; Kozegar E; Soryani M Ultrasonics; 2023 Mar; 129():106891. PubMed ID: 36493507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]