These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32970853)

  • 1. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses.
    Holloway T; Steinbrecher T; Pérez M; Seville A; Stock D; Nakabayashi K; Leubner-Metzger G
    New Phytol; 2021 Feb; 229(4):2179-2191. PubMed ID: 32970853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avena fatua caryopsis dormancy release is associated with changes in KAR
    Kępczyński J; Wójcik A; Dziurka M
    Planta; 2021 Jan; 253(2):52. PubMed ID: 33507406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos.
    Cembrowska-Lech D; Kępczyński J
    Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KAR
    Kępczyński J; Dziurka M; Wójcik A
    Planta; 2024 Apr; 259(6):126. PubMed ID: 38635035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KAR
    Orłowska A; Kępczyński J
    J Plant Physiol; 2024 Sep; 303():154363. PubMed ID: 39366098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.
    Cembrowska-Lech D; Koprowski M; Kępczyński J
    J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution.
    Burrieza HP; López-Fernández MP; Maldonado S
    Front Plant Sci; 2014; 5():546. PubMed ID: 25360139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NO-mediated dormancy release of Avena fatua caryopses is associated with decrease in abscisic acid sensitivity, content and ABA/GA
    Kępczyński J; Wójcik A; Dziurka M
    Planta; 2023 Apr; 257(6):101. PubMed ID: 37087501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of ethylene biosynthesis and perception during germination of dormant Avena fatua L. caryopses induced by KAR
    Ruduś I; Cembrowska-Lech D; Jaworska A; Kępczyński J
    Planta; 2019 Mar; 249(3):719-738. PubMed ID: 30370496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of Seed Germination and Dormancy Characteristics and Genetic Analysis of Latvian
    Ņečajeva J; Bleidere M; Jansone Z; Gailīte A; Ruņģis D
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33530398
    [No Abstract]   [Full Text] [Related]  

  • 11. The biomechanics of seed germination.
    Steinbrecher T; Leubner-Metzger G
    J Exp Bot; 2017 Feb; 68(4):765-783. PubMed ID: 27927995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana.
    Shigeyama T; Watanabe A; Tokuchi K; Toh S; Sakurai N; Shibuya N; Kawakami N
    J Exp Bot; 2016 Oct; 67(19):5615-5629. PubMed ID: 27605715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies in Wild Oat Seed Dormancy: I. THE ROLE OF ETHYLENE IN DORMANCY BREAKAGE AND GERMINATION OF WILD OAT SEEDS (AVENA FATUA L.).
    Adkins SW; Ross JD
    Plant Physiol; 1981 Feb; 67(2):358-62. PubMed ID: 16661675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetic model and molecular markers for wild oat (Avena fatua L.) seed dormancy.
    Fennimore SA; Nyquist WE; Shaner GE; Doerge RW; Foley ME
    Theor Appl Genet; 1999 Aug; 99(3-4):711-8. PubMed ID: 22665209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seed germination and dormancy: The classic story, new puzzles, and evolution.
    Nonogaki H
    J Integr Plant Biol; 2019 May; 61(5):541-563. PubMed ID: 30565406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seed dormancy and germination.
    Penfield S
    Curr Biol; 2017 Sep; 27(17):R874-R878. PubMed ID: 28898656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of epicotyl dormancy among tropical montane forest species in Sri Lanka.
    Athugala YS; Jayasuriya KMGG; Gunarathne AMTA; Baskin CC
    Plant Biol (Stuttg); 2018 Sep; 20(5):916-925. PubMed ID: 29779244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotyping of endosperms to determine seed dormancy genes regulating germination through embryonic, endospermic, or maternal tissues in rice.
    Gu XY; Zhang J; Ye H; Zhang L; Feng J
    G3 (Bethesda); 2014 Dec; 5(2):183-93. PubMed ID: 25480961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination.
    Li WY; Chen BX; Chen ZJ; Gao YT; Chen Z; Liu J
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28098759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dormancy-related seed positional effect in two populations of an annual grass from locations of contrasting aridity.
    Volis S
    PLoS One; 2014; 9(3):e93061. PubMed ID: 24675719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.