BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32970889)

  • 1. Mechanism and quantitative assessment of saturation transfer for water-based detection of the aliphatic protons in carbohydrate polymers.
    Zhou Y; van Zijl PCM; Xu J; Yadav NN
    Magn Reson Med; 2021 Mar; 85(3):1643-1654. PubMed ID: 32970889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T.
    Jones CK; Huang A; Xu J; Edden RA; Schär M; Hua J; Oskolkov N; Zacà D; Zhou J; McMahon MT; Pillai JJ; van Zijl PC
    Neuroimage; 2013 Aug; 77():114-24. PubMed ID: 23567889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of chemical exchange on the relayed nuclear Overhauser enhancement signal in saturation transfer MRI.
    Jin T; Kim SG
    Magn Reson Med; 2022 Jan; 87(1):365-376. PubMed ID: 34382694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum.
    van Zijl PCM; Lam WW; Xu J; Knutsson L; Stanisz GJ
    Neuroimage; 2018 Mar; 168():222-241. PubMed ID: 28435103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI.
    Xu J; Yadav NN; Bar-Shir A; Jones CK; Chan KW; Zhang J; Walczak P; McMahon MT; van Zijl PC
    Magn Reson Med; 2014 May; 71(5):1798-812. PubMed ID: 23813483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical solution of the Bloch-McConnell equations for steady-state CEST Z-spectra.
    Shaghaghi M; Cai K
    Magn Reson Imaging; 2024 Jun; 109():74-82. PubMed ID: 38430977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voxel-wise Optimization of Pseudo Voigt Profile (VOPVP) for Z-spectra fitting in chemical exchange saturation transfer (CEST) MRI.
    Zhang L; Zhao Y; Chen Y; Bie C; Liang Y; He X; Song X
    Quant Imaging Med Surg; 2019 Oct; 9(10):1714-1730. PubMed ID: 31728314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects.
    Zhang XY; Wang F; Li H; Xu J; Gochberg DF; Gore JC; Zu Z
    NMR Biomed; 2017 Jul; 30(7):. PubMed ID: 28272761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The z-spectrum from human blood at 7T.
    Shah SM; Mougin OE; Carradus AJ; Geades N; Dury R; Morley W; Gowland PA
    Neuroimage; 2018 Feb; 167():31-40. PubMed ID: 29111410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI.
    Zhou Y; Bie C; van Zijl PCM; Yadav NN
    NMR Biomed; 2023 Jun; 36(6):e4778. PubMed ID: 35642102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer.
    Zaiss M; Kunz P; Goerke S; Radbruch A; Bachert P
    NMR Biomed; 2013 Dec; 26(12):1815-22. PubMed ID: 24115020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo reproducibility of 3D relayed NOE in the healthy human brain at 7 T.
    Benyard B; Nanga RPR; Wilson NE; Thakuri D; Jacobs PS; Swain A; Kumar D; Reddy R
    Magn Reson Med; 2023 Jun; 89(6):2295-2304. PubMed ID: 36744726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity and specificity of CEST and NOE MRI in injured spinal cord in monkeys.
    Wang F; Zu Z; Wu TL; Yan X; Lu M; Yang PF; Byun NE; Reed JL; Gore JC; Chen LM
    Neuroimage Clin; 2021; 30():102633. PubMed ID: 33780866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetization transfer contrast-suppressed imaging of amide proton transfer and relayed nuclear overhauser enhancement chemical exchange saturation transfer effects in the human brain at 7T.
    Xu X; Yadav NN; Zeng H; Jones CK; Zhou J; van Zijl PC; Xu J
    Magn Reson Med; 2016 Jan; 75(1):88-96. PubMed ID: 26445350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward more reliable measurements of NOE effects in CEST spectra at around -1.6 ppm (NOE (-1.6)) in rat brain.
    Zu Z
    Magn Reson Med; 2019 Jan; 81(1):208-219. PubMed ID: 30058128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of true and pseudo NOE signals using CEST-MRI and CEST-MRS sequences with and without lipid suppression.
    Lu J; Zhou J; Cai C; Cai S; Chen Z
    Magn Reson Med; 2015 Apr; 73(4):1615-22. PubMed ID: 24803172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR studies of 1H NOEs in glycogen.
    Chen W; Avison MJ; Zhu XH; Shulman RG
    Biochemistry; 1993 Nov; 32(43):11483-7. PubMed ID: 8218214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of the effects of water proton concentration and water T
    Lee DH; Heo HY; Zhang K; Zhang Y; Jiang S; Zhao X; Zhou J
    Magn Reson Med; 2017 Feb; 77(2):855-863. PubMed ID: 26841096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange studies.
    Jin T; Kim SG
    NMR Biomed; 2014 Nov; 27(11):1313-24. PubMed ID: 25199631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximated analytical characterization of the steady-state chemical exchange saturation transfer (CEST) signals.
    Jin T; Kim SG
    Magn Reson Med; 2019 Nov; 82(5):1876-1889. PubMed ID: 31237027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.