These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32970901)

  • 41. Long-term growth-increment chronologies reveal diverse influences of climate forcing on freshwater and forest biota in the Pacific Northwest.
    Black BA; Dunham JB; Blundon BW; Brim-Box J; Tepley AJ
    Glob Chang Biol; 2015 Feb; 21(2):594-604. PubMed ID: 25258169
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing Effects of Flow Regulation and an Experimental Flow Pulse on Population Size Structure of Riverine Fish with Contrasting Biological Characteristics.
    Rolls RJ
    Environ Manage; 2021 Apr; 67(4):763-778. PubMed ID: 33547920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flow regime alteration degrades ecological networks in riparian ecosystems.
    Tonkin JD; Merritt DM; Olden JD; Reynolds LV; Lytle DA
    Nat Ecol Evol; 2018 Jan; 2(1):86-93. PubMed ID: 29180707
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impacts of water resources development on flow regimes in the Brazos River.
    Vogl AL; Lopes VL
    Environ Monit Assess; 2009 Oct; 157(1-4):331-45. PubMed ID: 18819012
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Density-dependence and environmental variability have stage-specific influences on European grayling growth.
    Marsh JE; Cove RJ; Britton JR; Wellard RG; Bašić T; Gregory SD
    Oecologia; 2022 May; 199(1):103-117. PubMed ID: 35507086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. River ecosystem endangerment from climate change-driven regulated flow regimes.
    Rivaes RP; Feio MJ; Almeida SFP; Calapez AR; Sales M; Gebler D; Lozanovska I; Aguiar FC
    Sci Total Environ; 2022 Apr; 818():151857. PubMed ID: 34826460
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Resource subsidies between stream and terrestrial ecosystems under global change.
    Larsen S; Muehlbauer JD; Marti E
    Glob Chang Biol; 2016 Jul; 22(7):2489-504. PubMed ID: 26649817
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of flow regimes altered by dams on survival, population declines, and range-wide losses of California river-breeding frogs.
    Kupferberg SJ; Palen WJ; Lind AJ; Bobzien S; Catenazzi A; Drennan J; Power ME
    Conserv Biol; 2012 Jun; 26(3):513-24. PubMed ID: 22594596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of the integrated riparian ecosystem response to future flow regimes on semiarid rivers in Colorado, USA.
    Diehl RM; Wilcox AC; Stella JC
    J Environ Manage; 2020 Oct; 271():111037. PubMed ID: 32778317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dam regulation and riverine food-web structure in a Mediterranean river.
    Mor JR; Ruhí A; Tornés E; Valcárcel H; Muñoz I; Sabater S
    Sci Total Environ; 2018 Jun; 625():301-310. PubMed ID: 29289778
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrometeorology and flood pulse dynamics drive diarrheal disease outbreaks and increase vulnerability to climate change in surface-water-dependent populations: A retrospective analysis.
    Alexander KA; Heaney AK; Shaman J
    PLoS Med; 2018 Nov; 15(11):e1002688. PubMed ID: 30408029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Global versus local change effects on a large European river.
    Floury M; Delattre C; Ormerod SJ; Souchon Y
    Sci Total Environ; 2012 Dec; 441():220-9. PubMed ID: 23137988
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes.
    Rajesh M; Rehana S
    Sci Rep; 2022 Jun; 12(1):9222. PubMed ID: 35655079
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tuning stochastic matrix models with hydrologic data to predict the population dynamics of a riverine fish.
    Sakaris PC; Irwin ER
    Ecol Appl; 2010 Mar; 20(2):483-96. PubMed ID: 20405801
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Implications of climate change for potamodromous fishes.
    Beatty SJ; Morgan DL; Lymbery AJ
    Glob Chang Biol; 2014 Jun; 20(6):1794-807. PubMed ID: 24307662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. River regulation and recruitment in a protracted-spawning riverine fish.
    Humphries P; Richardson A; Wilson G; Ellison T
    Ecol Appl; 2013 Jan; 23(1):208-25. PubMed ID: 23495647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.
    Ryo M; Iwasaki Y; Yoshimura C; Saavedra V OC
    PLoS One; 2015; 10(7):e0133833. PubMed ID: 26207997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Eco-hydrological impacts of Three Gorges Reservoir's operation on three outfalls of Chingjiang River].
    Li JB; Luo ZH; Ye YY; Yang B
    Ying Yong Sheng Tai Xue Bao; 2016 Apr; 27(4):1285-1293. PubMed ID: 29732787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin.
    Roberts JJ; Fausch KD; Peterson DP; Hooten MB
    Glob Chang Biol; 2013 May; 19(5):1383-98. PubMed ID: 23505098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.