These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32971019)

  • 1. Fast and Flexible Protein Design Using Deep Graph Neural Networks.
    Strokach A; Becerra D; Corbi-Verge C; Perez-Riba A; Kim PM
    Cell Syst; 2020 Oct; 11(4):402-411.e4. PubMed ID: 32971019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational generation of proteins with predetermined three-dimensional shapes using ProteinSolver.
    Strokach A; Becerra D; Corbi-Verge C; Perez-Riba A; Kim PM
    STAR Protoc; 2021 Jun; 2(2):100505. PubMed ID: 33997819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ProDCoNN: Protein design using a convolutional neural network.
    Zhang Y; Chen Y; Wang C; Lo CC; Liu X; Wu W; Zhang J
    Proteins; 2020 Jul; 88(7):819-829. PubMed ID: 31867753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural networks to learn protein sequence-function relationships from deep mutational scanning data.
    Gelman S; Fahlberg SA; Heinzelman P; Romero PA; Gitter A
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPIN2: Predicting sequence profiles from protein structures using deep neural networks.
    O'Connell J; Li Z; Hanson J; Heffernan R; Lyons J; Paliwal K; Dehzangi A; Yang Y; Zhou Y
    Proteins; 2018 Jun; 86(6):629-633. PubMed ID: 29508448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PYTHIA: Deep Learning Approach for Local Protein Conformation Prediction.
    Cretin G; Galochkina T; de Brevern AG; Gelly JC
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ELASPIC2 (EL2): Combining Contextualized Language Models and Graph Neural Networks to Predict Effects of Mutations.
    Strokach A; Lu TY; Kim PM
    J Mol Biol; 2021 May; 433(11):166810. PubMed ID: 33450251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Evolution-Based Approach to De Novo Protein Design.
    Brender JR; Shultis D; Khattak NA; Zhang Y
    Methods Mol Biol; 2017; 1529():243-264. PubMed ID: 27914055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13.
    Kandathil SM; Greener JG; Jones DT
    Proteins; 2019 Dec; 87(12):1092-1099. PubMed ID: 31298436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring "dark-matter" protein folds using deep learning.
    Harteveld Z; Van Hall-Beauvais A; Morozova I; Southern J; Goverde C; Georgeon S; Rosset S; Defferrard M; Loukas A; Vandergheynst P; Bronstein MM; Correia BE
    Cell Syst; 2024 Oct; 15(10):898-910.e5. PubMed ID: 39383860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Protein Design with Deep Learning Neural Networks.
    Wang J; Cao H; Zhang JZH; Qi Y
    Sci Rep; 2018 Apr; 8(1):6349. PubMed ID: 29679026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of protein structure classes with flexible neural tree.
    Bao W; Chen Y; Wang D
    Biomed Mater Eng; 2014; 24(6):3797-806. PubMed ID: 25227096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepSS2GO: protein function prediction from secondary structure.
    Song FV; Su J; Huang S; Zhang N; Li K; Ni M; Liao M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence search methods and scoring functions for the design of protein structures.
    Madaoui H; Becker E; Guerois R
    Methods Mol Biol; 2006; 340():183-206. PubMed ID: 16957338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference.
    Jones D; Kim H; Zhang X; Zemla A; Stevenson G; Bennett WFD; Kirshner D; Wong SE; Lightstone FC; Allen JE
    J Chem Inf Model; 2021 Apr; 61(4):1583-1592. PubMed ID: 33754707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.
    Li M; Ling C; Xu Q; Gao J
    Amino Acids; 2018 Feb; 50(2):255-266. PubMed ID: 29151135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein sequence design with a learned potential.
    Anand N; Eguchi R; Mathews II; Perez CP; Derry A; Altman RB; Huang PS
    Nat Commun; 2022 Feb; 13(1):746. PubMed ID: 35136054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.