These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 32971134)
1. Robotic stereotaxic system based on 3D skull reconstruction to improve surgical accuracy and speed. Ly PT; Lucas A; Pun SH; Dondzillo A; Liu C; Klug A; Lei TC J Neurosci Methods; 2021 Jan; 347():108955. PubMed ID: 32971134 [TBL] [Abstract][Full Text] [Related]
2. Co-registration of Imaging Modalities (MRI, CT and PET) to Perform Frameless Stereotaxic Robotic Injections in the Common Marmoset. Kwan C; Kang MS; Nuara SG; Gourdon JC; Bédard D; Tardif CL; Hopewell R; Ross K; Bdair H; Hamadjida A; Massarweh G; Soucy JP; Luo W; Del Cid Pellitero E; Shlaifer I; Durcan TM; Fon EA; Rosa-Neto P; Frey S; Huot P Neuroscience; 2022 Jan; 480():143-154. PubMed ID: 34774970 [TBL] [Abstract][Full Text] [Related]
3. A fiducial skull marker for precise MRI-based stereotaxic surgery in large animal models. Glud AN; Bech J; Tvilling L; Zaer H; Orlowski D; Fitting LM; Ziedler D; Geneser M; Sangill R; Alstrup AKO; Bjarkam CR; Sørensen JCH J Neurosci Methods; 2017 Jun; 285():45-48. PubMed ID: 28472679 [TBL] [Abstract][Full Text] [Related]
4. 3D printed rodent skin-skull-brain model: A novel animal-free approach for neurosurgical training. Bainier M; Su A; Redondo RL PLoS One; 2021; 16(6):e0253477. PubMed ID: 34161366 [TBL] [Abstract][Full Text] [Related]
5. Robotic surgical rehearsal on patient-specific 3D-printed skull models for stereoelectroencephalography (SEEG). Camara D; Panov F; Oemke H; Ghatan S; Costa A Int J Comput Assist Radiol Surg; 2019 Jan; 14(1):139-145. PubMed ID: 30426399 [TBL] [Abstract][Full Text] [Related]
6. MRI-guided stereotaxic targeting in pigs based on a stereotaxic localizer box fitted with an isocentric frame and use of SurgiPlan computer-planning software. Bjarkam CR; Cancian G; Glud AN; Ettrup KS; Jørgensen RL; Sørensen JC J Neurosci Methods; 2009 Oct; 183(2):119-26. PubMed ID: 19559051 [TBL] [Abstract][Full Text] [Related]
7. Robotic laser osteotomy through penscriptive structured light visual servoing. Jivraj J; Deorajh R; Lai P; Chen C; Nguyen N; Ramjist J; Yang VXD Int J Comput Assist Radiol Surg; 2019 May; 14(5):809-818. PubMed ID: 30730030 [TBL] [Abstract][Full Text] [Related]
8. Expanding the Spectrum of Robotic Assistance in Cranial Neurosurgery. Pillai A; Ratnathankom A; Ramachandran SN; Udayakumaran S; Subhash P; Krishnadas A Oper Neurosurg (Hagerstown); 2019 Aug; 17(2):164-173. PubMed ID: 30203040 [TBL] [Abstract][Full Text] [Related]
9. A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. Dorfer C; Minchev G; Czech T; Stefanits H; Feucht M; Pataraia E; Baumgartner C; Kronreif G; Wolfsberger S J Neurosurg; 2017 May; 126(5):1622-1628. PubMed ID: 27494814 [TBL] [Abstract][Full Text] [Related]
10. Neurosurgical robotic arm drilling navigation system. Lin CC; Lin HC; Lee WY; Lee ST; Wu CT Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27910205 [TBL] [Abstract][Full Text] [Related]
11. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation. Zeng B; Meng F; Ding H; Wang G Int J Comput Assist Radiol Surg; 2017 Aug; 12(8):1355-1368. PubMed ID: 28664416 [TBL] [Abstract][Full Text] [Related]
12. A novel stereotaxic system for implanting a curved lead to two intracranial targets with high accuracy. Ding CY; Yu LH; Lin YX; Chen F; Wang WX; Lin ZY; Kang DZ J Neurosci Methods; 2017 Nov; 291():190-197. PubMed ID: 28834693 [TBL] [Abstract][Full Text] [Related]
13. Assembly and operation of an open-source, computer numerical controlled (CNC) robot for performing cranial microsurgical procedures. Rynes ML; Ghanbari L; Schulman DS; Linn S; Laroque M; Dominguez J; Navabi ZS; Sherman P; Kodandaramaiah SB Nat Protoc; 2020 Jun; 15(6):1992-2023. PubMed ID: 32405052 [TBL] [Abstract][Full Text] [Related]
14. Accurate 3D reconstruction of bony surfaces using ultrasonic synthetic aperture techniques for robotic knee arthroplasty. Kerr W; Rowe P; Pierce SG Comput Med Imaging Graph; 2017 Jun; 58():23-32. PubMed ID: 28448851 [TBL] [Abstract][Full Text] [Related]
15. RatHat: A Self-Targeting Printable Brain Implant System. Allen LM; Jayachandran M; Viena TD; Su M; McNaughton BL; Allen TA eNeuro; 2020; 7(2):. PubMed ID: 32144143 [TBL] [Abstract][Full Text] [Related]
16. Development of a 6DOF robotic motion phantom for radiation therapy. Belcher AH; Liu X; Grelewicz Z; Pearson E; Wiersma RD Med Phys; 2014 Dec; 41(12):121704. PubMed ID: 25471951 [TBL] [Abstract][Full Text] [Related]
17. Electrode placement accuracy in robot-assisted epilepsy surgery: A comparison of different referencing techniques including frame-based CT versus facial laser scan based on CT or MRI. Spyrantis A; Cattani A; Woebbecke T; Konczalla J; Strzelczyk A; Rosenow F; Wagner M; Seifert V; Kudernatsch M; Freiman TM Epilepsy Behav; 2019 Feb; 91():38-47. PubMed ID: 30497893 [TBL] [Abstract][Full Text] [Related]
18. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions. Gravett M; Cepek J; Fenster A Med Phys; 2017 Nov; 44(11):5544-5555. PubMed ID: 28849592 [TBL] [Abstract][Full Text] [Related]
19. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience. Caversaccio M; Langlotz F; Nolte LP; Häusler R Acta Otolaryngol; 2007 Apr; 127(4):403-7. PubMed ID: 17453461 [TBL] [Abstract][Full Text] [Related]
20. Automatic ultrasound scanning robotic system with optical waveguide-based force measurement. Chen S; Li Z; Lin Y; Wang F; Cao Q Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):1015-1025. PubMed ID: 33939078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]