These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32971220)
1. Cross-correlating analyses of mineral-associated microorganisms in an unsaturated packed bed flow-through column test; cell number, activity and EPS. Makaula DX; Huddy RJ; Fagan-Endres MA; Harrison STL Res Microbiol; 2020; 171(7):222-229. PubMed ID: 32971220 [TBL] [Abstract][Full Text] [Related]
2. Biofilm dynamics and EPS production of a thermoacidophilic bioleaching archaeon. Zhang R; Neu TR; Blanchard V; Vera M; Sand W N Biotechnol; 2019 Jul; 51():21-30. PubMed ID: 30743061 [TBL] [Abstract][Full Text] [Related]
3. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Wakeman K; Auvinen H; Johnson DB Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880 [TBL] [Abstract][Full Text] [Related]
4. Extracellular polymeric substances (EPS) producing and oil degrading bacteria isolated from the northern Gulf of Mexico. Bacosa HP; Kamalanathan M; Chiu MH; Tsai SM; Sun L; Labonté JM; Schwehr KA; Hala D; Santschi PH; Chin WC; Quigg A PLoS One; 2018; 13(12):e0208406. PubMed ID: 30521589 [TBL] [Abstract][Full Text] [Related]
5. Effect of diurnal temperature range on bioleaching of sulfide ore by an artificial microbial consortium. Fang X; Sun S; Liao X; Li S; Zhou S; Gan Q; Zeng L; Guan Z Sci Total Environ; 2022 Feb; 806(Pt 1):150234. PubMed ID: 34562759 [TBL] [Abstract][Full Text] [Related]
6. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA. Jones DS; Lapakko KA; Wenz ZJ; Olson MC; Roepke EW; Sadowsky MJ; Novak PJ; Bailey JV Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600313 [TBL] [Abstract][Full Text] [Related]
7. Silicate mineral dissolution during heap bioleaching. Dopson M; Halinen AK; Rahunen N; Boström D; Sundkvist JE; Riekkola-Vanhanen M; Kaksonen AH; Puhakka JA Biotechnol Bioeng; 2008 Mar; 99(4):811-20. PubMed ID: 17705245 [TBL] [Abstract][Full Text] [Related]
8. Specific mechanism of Acidithiobacillus caldus extracellular polymeric substances in the bioleaching of copper-bearing sulfide ore. Feng S; Li K; Huang Z; Tong Y; Yang H PLoS One; 2019; 14(4):e0213945. PubMed ID: 30978195 [TBL] [Abstract][Full Text] [Related]
10. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Brierley CL; Brierley JA Appl Microbiol Biotechnol; 2013 Sep; 97(17):7543-52. PubMed ID: 23877580 [TBL] [Abstract][Full Text] [Related]
11. A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions. Diao M; Taran E; Mahler S; Nguyen AV Adv Colloid Interface Sci; 2014 Oct; 212():45-63. PubMed ID: 25245273 [TBL] [Abstract][Full Text] [Related]
12. The effect of flow velocity on the distribution and composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms. Wang C; Miao L; Hou J; Wang P; Qian J; Dai S Water Sci Technol; 2014; 69(4):825-32. PubMed ID: 24569283 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the EPS from a thermophilic corrosive consortium. Atalah J; Blamey L; Gelineo-Albersheim I; Blamey JM Biofouling; 2019 Nov; 35(10):1075-1082. PubMed ID: 31899955 [TBL] [Abstract][Full Text] [Related]
14. Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms. Bellenberg S; Buetti-Dinh A; Galli V; Ilie O; Herold M; Christel S; Boretska M; Pivkin IV; Wilmes P; Sand W; Vera M; Dopson M Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30076195 [TBL] [Abstract][Full Text] [Related]
15. Sorption fractionation of bacterial extracellular polymeric substances (EPS) on mineral surfaces and associated effects on phenanthrene sorption to EPS-mineral complexes. Chen Y; Wang M; Zhou X; Fu H; Qu X; Zhu D Chemosphere; 2021 Jan; 263():128264. PubMed ID: 33297208 [TBL] [Abstract][Full Text] [Related]
16. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells. Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701 [TBL] [Abstract][Full Text] [Related]
17. Distribution of oxidizing bacterial activities and characterization of bioleaching-related microorganisms in a uranium mineral heap. de Silóniz MI; Lorenzo P; Perera J Microbiologia; 1991 Sep; 7(2):82-9. PubMed ID: 1760138 [TBL] [Abstract][Full Text] [Related]
18. The effect of extracellular polymeric substances (EPS) of iron-oxidizing bacteria (Ochrobactrum EEELCW01) on mineral transformation and arsenic (As) fate. Wu C; Chen Y; Qian Z; Chen H; Li W; Li Q; Xue S J Environ Sci (China); 2023 Aug; 130():187-196. PubMed ID: 37032035 [TBL] [Abstract][Full Text] [Related]
19. Did mineral surface chemistry and toxicity contribute to evolution of microbial extracellular polymeric substances? Xu J; Campbell JM; Zhang N; Hickey WJ; Sahai N Astrobiology; 2012 Aug; 12(8):785-98. PubMed ID: 22934560 [TBL] [Abstract][Full Text] [Related]
20. Microorganisms meet solid minerals: interactions and biotechnological applications. Ng DH; Kumar A; Cao B Appl Microbiol Biotechnol; 2016 Aug; 100(16):6935-46. PubMed ID: 27338573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]