BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32971286)

  • 1. Human serine racemase is inhibited by glyceraldehyde 3-phosphate, but not by glyceraldehyde 3-phosphate dehydrogenase.
    Michielon A; Marchesani F; Faggiano S; Giaccari R; Campanini B; Bettati S; Mozzarelli A; Bruno S
    Biochim Biophys Acta Proteins Proteom; 2021 Jan; 1869(1):140544. PubMed ID: 32971286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and structure of glyceraldehyde-3-phosphate dehydrogenase type 1 from Escherichia coli.
    Zhang L; Liu MR; Yao YC; Bostrom IK; Wang YD; Chen AQ; Li JX; Gu SH; Ji CN
    Acta Crystallogr F Struct Biol Commun; 2020 Sep; 76(Pt 9):406-413. PubMed ID: 32880588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unexpected phosphate binding site in glyceraldehyde 3-phosphate dehydrogenase: crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme.
    Cook WJ; Senkovich O; Chattopadhyay D
    BMC Struct Biol; 2009 Feb; 9():9. PubMed ID: 19243605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of two ternary complexes of phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus with NAD and D-glyceraldehyde 3-phosphate.
    Didierjean C; Corbier C; Fatih M; Favier F; Boschi-Muller S; Branlant G; Aubry A
    J Biol Chem; 2003 Apr; 278(15):12968-76. PubMed ID: 12569100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterisation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from the liver fluke, Fasciola hepatica.
    Zinsser VL; Hoey EM; Trudgett A; Timson DJ
    Biochim Biophys Acta; 2014 Apr; 1844(4):744-9. PubMed ID: 24566472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of mammalian serine racemase: evidence for conformational changes upon inhibitor binding.
    Smith MA; Mack V; Ebneth A; Moraes I; Felicetti B; Wood M; Schonfeld D; Mather O; Cesura A; Barker J
    J Biol Chem; 2010 Apr; 285(17):12873-81. PubMed ID: 20106978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of pyridoxal 5'-phosphate-dependent serine racemase in silkworm, Bombyx mori.
    Uo T; Yoshimura T; Shimizu S; Esaki N
    Biochem Biophys Res Commun; 1998 May; 246(1):31-4. PubMed ID: 9600063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal ion dependency of serine racemase from Dictyostelium discoideum.
    Ito T; Murase H; Maekawa M; Goto M; Hayashi S; Saito H; Maki M; Hemmi H; Yoshimura T
    Amino Acids; 2012 Oct; 43(4):1567-76. PubMed ID: 22311068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP binding to human serine racemase is cooperative and modulated by glycine.
    Marchetti M; Bruno S; Campanini B; Peracchi A; Mai N; Mozzarelli A
    FEBS J; 2013 Nov; 280(22):5853-63. PubMed ID: 23992455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function.
    Nelson DL; Applegate GA; Beio ML; Graham DL; Berkowitz DB
    J Biol Chem; 2017 Aug; 292(34):13986-14002. PubMed ID: 28696262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the catalytic mechanism of the yeast pyridoxal 5-phosphate synthase Snz1.
    Zhang X; Teng YB; Liu JP; He YX; Zhou K; Chen Y; Zhou CZ
    Biochem J; 2010 Dec; 432(3):445-50. PubMed ID: 20919991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyceraldehyde-3-phosphate activates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase.
    Kots AYa ; Sergienko EA; Bulargina TV; Severin ES
    FEBS Lett; 1993 Jun; 324(1):33-6. PubMed ID: 8504856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of human serine racemase activity and dynamics by halides, ATP and malonate.
    Marchetti M; Bruno S; Campanini B; Bettati S; Peracchi A; Mozzarelli A
    Amino Acids; 2015 Jan; 47(1):163-73. PubMed ID: 25331425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties.
    Kiliszek A; Rypniewski W; Rząd K; Milewski S; Gabriel I
    J Struct Biol; 2019 Mar; 205(3):26-33. PubMed ID: 30742897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxamic acids as a novel family of serine racemase inhibitors: mechanistic analysis reveals different modes of interaction with the pyridoxal-5'-phosphate cofactor.
    Hoffman HE; Jirásková J; Cígler P; Sanda M; Schraml J; Konvalinka J
    J Med Chem; 2009 Oct; 52(19):6032-41. PubMed ID: 19791805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phosphate dehydrogenase.
    Boschi-Muller S; Azza S; Pollastro D; Corbier C; Branlant G
    J Biol Chem; 1997 Jun; 272(24):15106-12. PubMed ID: 9182530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state kinetics of the tungsten containing aldehyde: ferredoxin oxidoreductases from the hyperthermophilic archaeon Pyrococcus furiosus.
    Hagedoorn PL
    J Biotechnol; 2019 Dec; 306():142-148. PubMed ID: 31589889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the two phosphate binding sites of an analogue of the thioacyl intermediate for the Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase-catalyzed reaction, from its crystal structure.
    Castilho MS; Pavão F; Oliva G; Ladame S; Willson M; Périé J
    Biochemistry; 2003 Jun; 42(23):7143-51. PubMed ID: 12795610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1.
    Jia B; Linh le T; Lee S; Pham BP; Liu J; Pan H; Zhang S; Cheong GW
    Extremophiles; 2011 May; 15(3):337-46. PubMed ID: 21409597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties.
    Brunner NA; Brinkmann H; Siebers B; Hensel R
    J Biol Chem; 1998 Mar; 273(11):6149-56. PubMed ID: 9497334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.