These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32971398)

  • 1. Oxidative removal of soluble divalent manganese ion by chlorine in the presence of superfine powdered activated carbon.
    Saito S; Matsui Y; Yamamoto Y; Matsushita S; Mima S; Shirasaki N; Matsushita T
    Water Res; 2020 Dec; 187():116412. PubMed ID: 32971398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powdered activated carbon enhanced Manganese(II) removal by chlorine oxidation.
    Li G; Hao H; Zhuang Y; Wang Z; Shi B
    Water Res; 2019 Jun; 156():287-296. PubMed ID: 30925375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of soluble divalent manganese by superfine powdered activated carbon and free chlorine: Development and application of a simple kinetic model of mass transfer-catalytic surface oxidation.
    Saito S; Matsui Y; Shirasaki N; Matsushita T
    Water Res X; 2022 Aug; 16():100153. PubMed ID: 36032788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon.
    Ikari M; Matsui Y; Suzuki Y; Matsushita T; Shirasaki N
    Water Res; 2015 Jan; 68():227-37. PubMed ID: 25462731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.
    Bonvin F; Jost L; Randin L; Bonvin E; Kohn T
    Water Res; 2016 Mar; 90():90-99. PubMed ID: 26724443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe
    Su H; Dou X; Xu D; Feng L; Liu Y; Du Z; Zhang L
    Chemosphere; 2022 Apr; 293():133665. PubMed ID: 35051510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superiority of wet-milled over dry-milled superfine powdered activated carbon for adsorptive 2-methylisoborneol removal.
    Pan L; Matsui Y; Matsushita T; Shirasaki N
    Water Res; 2016 Oct; 102():516-523. PubMed ID: 27403874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying, counting, and characterizing superfine activated-carbon particles remaining after coagulation, sedimentation, and sand filtration.
    Nakazawa Y; Matsui Y; Hanamura Y; Shinno K; Shirasaki N; Matsushita T
    Water Res; 2018 Jul; 138():160-168. PubMed ID: 29587152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geosmin and 2-methylisoborneol removal using superfine powdered activated carbon: shell adsorption and branched-pore kinetic model analysis and optimal particle size.
    Matsui Y; Nakao S; Taniguchi T; Matsushita T
    Water Res; 2013 May; 47(8):2873-80. PubMed ID: 23528781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of trace organic contaminants from wastewater by superfine powdered activated carbon (SPAC) is neither affected by SPAC dispersal nor coagulation.
    Decrey L; Bonvin F; Bonvin C; Bonvin E; Kohn T
    Water Res; 2020 Oct; 185():116302. PubMed ID: 32823197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desorption of micropollutant from superfine and normal powdered activated carbon in submerged-membrane system due to influent concentration change in the presence of natural organic matter: Experiments and two-component branched-pore kinetic model.
    Pan L; Nakayama A; Matsui Y; Matsushita T; Shirasaki N
    Water Res; 2022 Jan; 208():117872. PubMed ID: 34837808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of trichloramine removal with activated carbon: stoichiometric analysis with isotopically labeled trichloramine and theoretical analysis with a diffusion-reaction model.
    Sakuma M; Matsushita T; Matsui Y; Aki T; Isaka M; Shirasaki N
    Water Res; 2015 Jan; 68():839-48. PubMed ID: 25466640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolucite fluidized-bed reactor (PFBR): a robust and compact process for removing manganese from groundwater.
    Dashtban Kenari SL; Barbeau B
    Water Res; 2014 Feb; 49():475-83. PubMed ID: 24183400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pre, post, and simultaneous loading of natural organic matter on 2-methylisoborneol adsorption on superfine powdered activated carbon: Reversibility and external pore-blocking.
    Nakayama A; Sakamoto A; Matsushita T; Matsui Y; Shirasaki N
    Water Res; 2020 Sep; 182():115992. PubMed ID: 32562960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in removal rates of virgin/decayed microplastics, viruses, activated carbon, and kaolin/montmorillonite clay particles by coagulation, flocculation, sedimentation, and rapid sand filtration during water treatment.
    Nakazawa Y; Abe T; Matsui Y; Shinno K; Kobayashi S; Shirasaki N; Matsushita T
    Water Res; 2021 Sep; 203():117550. PubMed ID: 34418646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of superfine pulverization of powdered activated carbon on adsorption of carbamazepine in natural source waters.
    Bakkaloglu S; Ersan M; Karanfil T; Apul OG
    Sci Total Environ; 2021 Nov; 793():148473. PubMed ID: 34328993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-milling super-fine powdered activated carbon decreases adsorption capacity by introducing oxygen/hydrogen-containing functional groups on carbon surface from water.
    Takaesu H; Matsui Y; Nishimura Y; Matsushita T; Shirasaki N
    Water Res; 2019 May; 155():66-75. PubMed ID: 30831425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Mn(II) removal by biological granular activated carbon filtration.
    Chen Q; Li G; Lu Z; Su Y; Wu B; Shi B
    J Hazard Mater; 2023 Sep; 458():131877. PubMed ID: 37344241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of competitive adsorption between 2-methylisoborneol and natural organic matter on superfine and conventionally sized powdered activated carbons.
    Matsui Y; Yoshida T; Nakao S; Knappe DR; Matsushita T
    Water Res; 2012 Oct; 46(15):4741-9. PubMed ID: 22763287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powdered activated carbon-catalyzed chlorine oxidation of bisphenol-A and methylene blue: Identification of the free radical and effect of the carbon surface functional group.
    Huang X; Liang H; Xu W; Xu S; Shi B
    Sci Total Environ; 2021 Nov; 797():149020. PubMed ID: 34303236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.