BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 3297141)

  • 1. Effects of the mutation glycine-222----aspartic acid on the functions of elongation factor Tu.
    Swart GW; Parmeggiani A; Kraal B; Bosch L
    Biochemistry; 1987 Apr; 26(7):2047-54. PubMed ID: 3297141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the reactivity of the GTP- and GDP-bound conformations of elongation factor Tu in complex with the antibiotic GE2270 A.
    Anborgh PH; Parmeggiani A
    J Biol Chem; 1993 Nov; 268(33):24622-8. PubMed ID: 8227020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.
    Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A
    EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain.
    Jensen M; Cool RH; Mortensen KK; Clark BF; Parmeggiani A
    Eur J Biochem; 1989 Jun; 182(2):247-55. PubMed ID: 2661226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands.
    Cetin R; Anborgh PH; Cool RH; Parmeggiani A
    Biochemistry; 1998 Jan; 37(2):486-95. PubMed ID: 9425069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular properties of two mutant species of the elongation factor Tu.
    Van der Meide PH; Duisterwinkel FJ; De Graaf JM; Kraal B; Bosch L; Douglass J; Blumenthal T
    Eur J Biochem; 1981 Jun; 117(1):1-6. PubMed ID: 7021152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between aminoacyl-tRNA and the mutant elongation factors Tu AR and B0.
    Abrahams JP; Acampo JJ; Ott G; Sprinzl M; de Graaf JM; Talens A; Kraal B
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):226-9. PubMed ID: 2207147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kirromycin drastically reduces the affinity of Escherichia coli elongation factor Tu for aminoacyl-tRNA.
    Abrahams JP; van Raaij MJ; Ott G; Kraal B; Bosch L
    Biochemistry; 1991 Jul; 30(27):6705-10. PubMed ID: 2065055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutant elongation factor Tu which does not immobilize the ribosome upon binding of kirromycin.
    Duisterwinkel FJ; De Graaf JM; Schretlen PJ; Kraal B; Bosch L
    Eur J Biochem; 1981 Jun; 117(1):7-12. PubMed ID: 7021158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.
    Tubulekas I; Hughes D
    J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered regulation of the guanosine 5'-triphosphate activity in a kirromycin-resistant elongation factor Tu.
    Fasano O; Parmeggiani A
    Biochemistry; 1981 Mar; 20(5):1361-6. PubMed ID: 6112013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of different modifications of elongation factor Tu from Escherichia coli on ternary complex formation investigated by fluorescence spectroscopy.
    Ott G; Jonák J; Abrahams IP; Sprinzl M
    Nucleic Acids Res; 1990 Feb; 18(3):437-41. PubMed ID: 2408011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationships in the GTP binding domain of EF-Tu: mutation of Val20, the residue homologous to position 12 in p21.
    Jacquet E; Parmeggiani A
    EMBO J; 1988 Sep; 7(9):2861-7. PubMed ID: 3181143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study.
    Dell VA; Miller DL; Johnson AE
    Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations.
    Mesters JR; Potapov AP; de Graaf JM; Kraal B
    J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.