BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 3297141)

  • 41. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional-structural analysis of threonine 25, a residue coordinating the nucleotide-bound magnesium in elongation factor Tu.
    Krab IM; Parmeggiani A
    J Biol Chem; 1999 Apr; 274(16):11132-8. PubMed ID: 10196198
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts.
    Cai YC; Bullard JM; Thompson NL; Spremulli LL
    J Biol Chem; 2000 Jul; 275(27):20308-14. PubMed ID: 10801827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of Glu259 in Escherichia coli elongation factor Tu in ternary complex formation.
    Pedersen GN; Rattenborg T; Knudsen CR; Clark BF
    Protein Eng; 1998 Feb; 11(2):101-8. PubMed ID: 9605544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of the antibiotic pulvomycin on the elongation factor Tu-dependent reactions. Comparison with other antibiotics.
    Anborgh PH; Okamura S; Parmeggiani A
    Biochemistry; 2004 Dec; 43(49):15550-6. PubMed ID: 15581367
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on polypeptide-chain-elongation factors from an extreme thermophile, Thermus thermophilus HB8. 2. Catalytic properties.
    Arai K; Arai N; Nakamura S; Oshima T; Kaziro Y
    Eur J Biochem; 1978 Dec; 92(2):521-31. PubMed ID: 367783
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Properties of a genetically engineered G domain of elongation factor Tu.
    Parmeggiani A; Swart GW; Mortensen KK; Jensen M; Clark BF; Dente L; Cortese R
    Proc Natl Acad Sci U S A; 1987 May; 84(10):3141-5. PubMed ID: 3554231
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutant ribosomes can generate dominant kirromycin resistance.
    Tubulekas I; Buckingham RH; Hughes D
    J Bacteriol; 1991 Jun; 173(12):3635-43. PubMed ID: 2050625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elongation factor Tu isolated from Escherichia coli mutants altered in TufA and tufB.
    Van der Meide PH; Borman TH; Van Kimmenade AM; Van de Putte P; Bosch L
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):3922-6. PubMed ID: 7001448
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A growth-defective kirromycin-resistant EF-Tu Escherichia coli mutant and a spontaneously evolved suppression of the defect.
    Zeef LA; Mesters JR; Kraal B; Bosch L
    Gene; 1995 Nov; 165(1):39-43. PubMed ID: 7489913
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutagenesis of bacterial elongation factor Tu at lysine 136. A conserved amino acid in GTP regulatory proteins.
    Hwang YW; Sanchez A; Miller DL
    J Biol Chem; 1989 May; 264(14):8304-9. PubMed ID: 2498311
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mutant EF-Tu species reveal novel features of the enacyloxin IIa inhibition mechanism on the ribosome.
    Zuurmond AM; Olsthoorn-Tieleman LN; Martien de Graaf J; Parmeggiani A; Kraal B
    J Mol Biol; 1999 Dec; 294(3):627-37. PubMed ID: 10610785
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutants of EF-Tu defective in binding aminoacyl-tRNA.
    Abdulkarim F; Ehrenberg M; Hughes D
    FEBS Lett; 1996 Mar; 382(3):297-303. PubMed ID: 8605989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Site-directed mutagenesis of Thermus thermophilus EF-Tu: the substitution of threonine-62 by serine or alanine.
    Ahmadian MR; Kreutzer R; Blechschmidt B; Sprinzl M
    FEBS Lett; 1995 Dec; 377(2):253-7. PubMed ID: 8543062
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elongation factor Tu resistant to kirromycin in an Escherichia coli mutant altered in both tuf genes.
    Fischer E; Wolf H; Hantke K; Parmeggiani A
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4341-5. PubMed ID: 337296
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Site-directed mutagenesis of elongation factor Tu. The functional and structural role of residue Cys81.
    Anborgh PH; Parmeggiani A; Jonák J
    Eur J Biochem; 1992 Sep; 208(2):251-7. PubMed ID: 1521523
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the functional consequences of lethal mutations in mitochondrial translational elongation factors.
    Akama K; Christian BE; Jones CN; Ueda T; Takeuchi N; Spremulli LL
    Biochim Biophys Acta; 2010; 1802(7-8):692-8. PubMed ID: 20435138
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histidine-118 of elongation factor Tu: its role in aminoacyl-tRNA binding and regulation of the GTPase activity.
    Jonák J; Anborgh PH; Parmeggiani A
    FEBS Lett; 1994 Apr; 343(1):94-8. PubMed ID: 8163025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The elongation factor Tu.kirromycin complex has two binding sites for tRNA molecules.
    van Noort JM; Duisterwinkel FJ; Jonák J; Sedlácek J; Kraal B; Bosch L
    EMBO J; 1982; 1(10):1199-205. PubMed ID: 6765192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.