These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 32971749)
1. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. Lim HK; Hong SJ; Byeon SJ; Chung SM; On SW; Yang BE; Lee JH; Byun SH Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971749 [TBL] [Abstract][Full Text] [Related]
2. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
3. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077 [TBL] [Abstract][Full Text] [Related]
4. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874 [TBL] [Abstract][Full Text] [Related]
5. Osteogenesis of 3D printed macro-pore size biphasic calcium phosphate scaffold in rabbit calvaria. Liu F; Liu Y; Li X; Wang X; Li D; Chung S; Chen C; Lee IS J Biomater Appl; 2019 Apr; 33(9):1168-1177. PubMed ID: 30665312 [TBL] [Abstract][Full Text] [Related]
6. Assessment of artificial bone materials with different structural pore sizes obtained from 3D printed polycaprolactone/ Qianjuan Z; Rong S; Shengxi L; Xuanhao L; Bin L; Fuxiang S Biomed Mater; 2024 Sep; 19(6):. PubMed ID: 39208855 [TBL] [Abstract][Full Text] [Related]
7. 3D-Plotted Beta-Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Critical-Sized Calvarial Defect Rat Model. Diao J; OuYang J; Deng T; Liu X; Feng Y; Zhao N; Mao C; Wang Y Adv Healthc Mater; 2018 Sep; 7(17):e1800441. PubMed ID: 30044555 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
9. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Kim JA; Lim J; Naren R; Yun HS; Park EK Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019 [TBL] [Abstract][Full Text] [Related]
10. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. Bertol LS; Schabbach R; Loureiro Dos Santos LA J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883 [TBL] [Abstract][Full Text] [Related]
11. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. Tarafder S; Dernell WS; Bandyopadhyay A; Bose S J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131 [TBL] [Abstract][Full Text] [Related]
12. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Schmidleithner C; Malferrari S; Palgrave R; Bomze D; Schwentenwein M; Kalaskar DM Biomed Mater; 2019 Jun; 14(4):045018. PubMed ID: 31170697 [TBL] [Abstract][Full Text] [Related]
13. Bone Regeneration Capability of 3D Printed Ceramic Scaffolds. Kim JW; Yang BE; Hong SJ; Choi HG; Byeon SJ; Lim HK; Chung SM; Lee JH; Byun SH Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32650589 [TBL] [Abstract][Full Text] [Related]
14. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451 [TBL] [Abstract][Full Text] [Related]
15. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Seol YJ; Park DY; Park JY; Kim SW; Park SJ; Cho DW Biotechnol Bioeng; 2013 May; 110(5):1444-55. PubMed ID: 23192318 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972 [TBL] [Abstract][Full Text] [Related]
17. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. Warnke PH; Seitz H; Warnke F; Becker ST; Sivananthan S; Sherry E; Liu Q; Wiltfang J; Douglas T J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):212-7. PubMed ID: 20091914 [TBL] [Abstract][Full Text] [Related]
18. Enhanced osteogenesis of honeycomb β-tricalcium phosphate scaffold by construction of interconnected pore structure: An in vivo study. Lu T; Feng S; He F; Ye J J Biomed Mater Res A; 2020 Mar; 108(3):645-653. PubMed ID: 31747100 [TBL] [Abstract][Full Text] [Related]
19. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692 [TBL] [Abstract][Full Text] [Related]