These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32972035)

  • 1. How Kinesin-1 Utilize the Energy of Nucleotide: The Conformational Changes and Mechanochemical Coupling in the Unidirectional Motion of Kinesin-1.
    Qin J; Zhang H; Geng Y; Ji Q
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32972035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinesin-5 allosteric inhibitors uncouple the dynamics of nucleotide, microtubule, and neck-linker binding sites.
    Scarabelli G; Grant BJ
    Biophys J; 2014 Nov; 107(9):2204-13. PubMed ID: 25418105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide binding and hydrolysis induces a disorder-order transition in the kinesin neck-linker region.
    Asenjo AB; Weinberg Y; Sosa H
    Nat Struct Mol Biol; 2006 Jul; 13(7):648-54. PubMed ID: 16783374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESR reveals the mobility of the neck linker in dimeric kinesin.
    Sugata K; Nakamura M; Ueki S; Fajer PG; Arata T
    Biochem Biophys Res Commun; 2004 Feb; 314(2):447-51. PubMed ID: 14733926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor proteins of the kinesin family. Structures, variations, and nucleotide binding sites.
    Sack S; Kull FJ; Mandelkow E
    Eur J Biochem; 1999 May; 262(1):1-11. PubMed ID: 10231357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the nucleotide-dependent conformations of kinesin-1 in the hydrolysis cycle.
    Ciudad A; Sancho JM
    J Chem Phys; 2009 Jul; 131(1):015104. PubMed ID: 19586125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural change in the kinesin motor protein that drives motility.
    Rice S; Lin AW; Safer D; Hart CL; Naber N; Carragher BO; Cain SM; Pechatnikova E; Wilson-Kubalek EM; Whittaker M; Pate E; Cooke R; Taylor EW; Milligan RA; Vale RD
    Nature; 1999 Dec; 402(6763):778-84. PubMed ID: 10617199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of ATP hydrolysis for kinesin processivity.
    Farrell CM; Mackey AT; Klumpp LM; Gilbert SP
    J Biol Chem; 2002 May; 277(19):17079-87. PubMed ID: 11864969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of microtubules in processive kinesin movement.
    Kikkawa M
    Trends Cell Biol; 2008 Mar; 18(3):128-35. PubMed ID: 18280159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How kinesin waits between steps.
    Mori T; Vale RD; Tomishige M
    Nature; 2007 Nov; 450(7170):750-4. PubMed ID: 18004302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of Conformational Changes of Tubulin Induced by Interaction with Kinesin Using Atomistic Molecular Dynamics Simulations.
    Shi XX; Wang PY; Chen H; Xie P
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Searching for kinesin's mechanical amplifier.
    Vale RD; Case R; Sablin E; Hart C; Fletterick R
    Philos Trans R Soc Lond B Biol Sci; 2000 Apr; 355(1396):449-57. PubMed ID: 10836498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processivity of the kinesin-2 KIF3A results from rear head gating and not front head gating.
    Chen GY; Arginteanu DF; Hancock WO
    J Biol Chem; 2015 Apr; 290(16):10274-94. PubMed ID: 25657001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding mechanochemical coupling in kinesins using first-passage-time processes.
    Kolomeisky AB; Stukalin EB; Popov AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031902. PubMed ID: 15903454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Insights into the Coupling between Microtubule Depolymerization and ATP Hydrolysis by Kinesin-13 Protein Kif2C.
    Wang W; Shen T; Guerois R; Zhang F; Kuerban H; Lv Y; Gigant B; Knossow M; Wang C
    J Biol Chem; 2015 Jul; 290(30):18721-31. PubMed ID: 26055718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the kinesin neck linker and catalytic core in microtubule-based motility.
    Case RB; Rice S; Hart CL; Ly B; Vale RD
    Curr Biol; 2000 Feb; 10(3):157-60. PubMed ID: 10679326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATPase kinetic characterization and single molecule behavior of mutant human kinesin motors defective in microtubule-based motility.
    Shimizu T; Thorn KS; Ruby A; Vale RD
    Biochemistry; 2000 May; 39(18):5265-73. PubMed ID: 10819995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closing of the nucleotide pocket of kinesin-family motors upon binding to microtubules.
    Naber N; Minehardt TJ; Rice S; Chen X; Grammer J; Matuska M; Vale RD; Kollman PA; Car R; Yount RG; Cooke R; Pate E
    Science; 2003 May; 300(5620):798-801. PubMed ID: 12730601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of Zen4 in the apo state reveals a missing conformation of kinesin.
    Guan R; Zhang L; Su QP; Mickolajczyk KJ; Chen GY; Hancock WO; Sun Y; Zhao Y; Chen Z
    Nat Commun; 2017 Apr; 8():14951. PubMed ID: 28393873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural and mechanochemical cycle of kinesin.
    Mandelkow E; Johnson KA
    Trends Biochem Sci; 1998 Nov; 23(11):429-33. PubMed ID: 9852761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.