These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32972671)

  • 1. Rule-based automatic diagnosis of thyroid nodules from intraoperative frozen sections using deep learning.
    Li Y; Chen P; Li Z; Su H; Yang L; Zhong D
    Artif Intell Med; 2020 Aug; 108():101918. PubMed ID: 32972671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive thyroid whole slide image diagnostic system using deep representation.
    Chen P; Shi X; Liang Y; Li Y; Yang L; Gader PD
    Comput Methods Programs Biomed; 2020 Oct; 195():105630. PubMed ID: 32634647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of machine learning models for rapid intraoperative diagnosis of thyroid nodules for clinical practice in China.
    Ma Y; Zhang X; Yi Z; Ding L; Cai B; Jiang Z; Liu W; Zou H; Wang X; Fu G
    Cancer Med; 2024 Feb; 13(3):e6854. PubMed ID: 38189547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does frozen section have a role in the intraoperative management of thyroid nodules?
    Cheng MS; Morgan JL; Serpell JW
    ANZ J Surg; 2002 Aug; 72(8):570-2. PubMed ID: 12190731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of fine-needle aspiration cytology and frozen-section examination in the operative management of thyroid nodules.
    Davoudi MM; Yeh KA; Wei JP
    Am Surg; 1997 Dec; 63(12):1084-9; discussion 1089-90. PubMed ID: 9393257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections.
    Kim YG; Kim S; Cho CE; Song IH; Lee HJ; Ahn S; Park SY; Gong G; Kim N
    Sci Rep; 2020 Dec; 10(1):21899. PubMed ID: 33318495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images.
    Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB
    Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.
    Ma J; Wu F; Jiang T; Zhao Q; Kong D
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1895-1910. PubMed ID: 28762196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections.
    Marsh JN; Matlock MK; Kudose S; Liu TC; Stappenbeck TS; Gaut JP; Swamidass SJ
    IEEE Trans Med Imaging; 2018 Dec; 37(12):2718-2728. PubMed ID: 29994669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images.
    Ma J; Wu F; Jiang T; Zhu J; Kong D
    Med Phys; 2017 May; 44(5):1678-1691. PubMed ID: 28186630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images.
    Zhou H; Jin Y; Dai L; Zhang M; Qiu Y; Wang K; Tian J; Zheng J
    Eur J Radiol; 2020 Jun; 127():108992. PubMed ID: 32339983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thyroid nodules risk stratification through deep learning based on ultrasound images.
    Bai Z; Chang L; Yu R; Li X; Wei X; Yu M; Liu Z; Gao J; Zhu J; Zhang Y; Wang S; Zhang Z
    Med Phys; 2020 Dec; 47(12):6355-6365. PubMed ID: 33089513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images.
    Sun C; Zhang Y; Chang Q; Liu T; Zhang S; Wang X; Guo Q; Yao J; Sun W; Niu L
    Med Phys; 2020 Sep; 47(9):3952-3960. PubMed ID: 32473030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning.
    Yu X; Wang H; Ma L
    Curr Med Imaging Rev; 2020; 16(2):174-180. PubMed ID: 32003318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Deep Learning Architecture for Detection and Recognition of Thyroid Nodules.
    Ma J; Duan S; Zhang Y; Wang J; Wang Z; Li R; Li Y; Zhang L; Ma H
    Comput Intell Neurosci; 2020; 2020():1242781. PubMed ID: 32831817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FNAC and frozen section correlations with definitive histology in thyroid diseases.
    Mayooran N; Waters PS; Kaim Khani TY; Kerin MJ; Quill D
    Eur Arch Otorhinolaryngol; 2016 Aug; 273(8):2181-4. PubMed ID: 26242254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of fine needle aspiration cytology and frozen section biopsies in the diagnosis of thyroid nodules.
    Chang HY; Lin JD; Chen JF; Huang BY; Hsueh C; Jeng LB; Tsai JS
    J Clin Pathol; 1997 Dec; 50(12):1005-9. PubMed ID: 9516882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contemporary utility of intraoperative frozen sections in thyroid surgery.
    Trosman SJ; Bhargavan R; Prendes BL; Burkey BB; Scharpf J
    Am J Otolaryngol; 2017; 38(5):614-617. PubMed ID: 28697907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual Interpretability in Computer-Assisted Diagnosis of Thyroid Nodules Using Ultrasound Images.
    Wei X; Zhu J; Zhang H; Gao H; Yu R; Liu Z; Zheng X; Gao M; Zhang S
    Med Sci Monit; 2020 Aug; 26():e927007. PubMed ID: 32798214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid nodules. Role of fine needle aspiration and intraoperative frozen section examination.
    Aguilar-Diosdado M; Contreras A; Gavilán I; Escobar-Jiménez L; Girón JA; Escribano JC; Beltrán M; García-Curiel A; Vázquez JM
    Acta Cytol; 1997; 41(3):677-82. PubMed ID: 9167682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.