BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32972671)

  • 1. Rule-based automatic diagnosis of thyroid nodules from intraoperative frozen sections using deep learning.
    Li Y; Chen P; Li Z; Su H; Yang L; Zhong D
    Artif Intell Med; 2020 Aug; 108():101918. PubMed ID: 32972671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive thyroid whole slide image diagnostic system using deep representation.
    Chen P; Shi X; Liang Y; Li Y; Yang L; Gader PD
    Comput Methods Programs Biomed; 2020 Oct; 195():105630. PubMed ID: 32634647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of machine learning models for rapid intraoperative diagnosis of thyroid nodules for clinical practice in China.
    Ma Y; Zhang X; Yi Z; Ding L; Cai B; Jiang Z; Liu W; Zou H; Wang X; Fu G
    Cancer Med; 2024 Feb; 13(3):e6854. PubMed ID: 38189547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does frozen section have a role in the intraoperative management of thyroid nodules?
    Cheng MS; Morgan JL; Serpell JW
    ANZ J Surg; 2002 Aug; 72(8):570-2. PubMed ID: 12190731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of fine-needle aspiration cytology and frozen-section examination in the operative management of thyroid nodules.
    Davoudi MM; Yeh KA; Wei JP
    Am Surg; 1997 Dec; 63(12):1084-9; discussion 1089-90. PubMed ID: 9393257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections.
    Kim YG; Kim S; Cho CE; Song IH; Lee HJ; Ahn S; Park SY; Gong G; Kim N
    Sci Rep; 2020 Dec; 10(1):21899. PubMed ID: 33318495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images.
    Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB
    Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.
    Ma J; Wu F; Jiang T; Zhao Q; Kong D
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1895-1910. PubMed ID: 28762196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections.
    Marsh JN; Matlock MK; Kudose S; Liu TC; Stappenbeck TS; Gaut JP; Swamidass SJ
    IEEE Trans Med Imaging; 2018 Dec; 37(12):2718-2728. PubMed ID: 29994669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images.
    Ma J; Wu F; Jiang T; Zhu J; Kong D
    Med Phys; 2017 May; 44(5):1678-1691. PubMed ID: 28186630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images.
    Zhou H; Jin Y; Dai L; Zhang M; Qiu Y; Wang K; Tian J; Zheng J
    Eur J Radiol; 2020 Jun; 127():108992. PubMed ID: 32339983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thyroid nodules risk stratification through deep learning based on ultrasound images.
    Bai Z; Chang L; Yu R; Li X; Wei X; Yu M; Liu Z; Gao J; Zhu J; Zhang Y; Wang S; Zhang Z
    Med Phys; 2020 Dec; 47(12):6355-6365. PubMed ID: 33089513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images.
    Sun C; Zhang Y; Chang Q; Liu T; Zhang S; Wang X; Guo Q; Yao J; Sun W; Niu L
    Med Phys; 2020 Sep; 47(9):3952-3960. PubMed ID: 32473030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning.
    Yu X; Wang H; Ma L
    Curr Med Imaging Rev; 2020; 16(2):174-180. PubMed ID: 32003318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Deep Learning Architecture for Detection and Recognition of Thyroid Nodules.
    Ma J; Duan S; Zhang Y; Wang J; Wang Z; Li R; Li Y; Zhang L; Ma H
    Comput Intell Neurosci; 2020; 2020():1242781. PubMed ID: 32831817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FNAC and frozen section correlations with definitive histology in thyroid diseases.
    Mayooran N; Waters PS; Kaim Khani TY; Kerin MJ; Quill D
    Eur Arch Otorhinolaryngol; 2016 Aug; 273(8):2181-4. PubMed ID: 26242254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of fine needle aspiration cytology and frozen section biopsies in the diagnosis of thyroid nodules.
    Chang HY; Lin JD; Chen JF; Huang BY; Hsueh C; Jeng LB; Tsai JS
    J Clin Pathol; 1997 Dec; 50(12):1005-9. PubMed ID: 9516882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contemporary utility of intraoperative frozen sections in thyroid surgery.
    Trosman SJ; Bhargavan R; Prendes BL; Burkey BB; Scharpf J
    Am J Otolaryngol; 2017; 38(5):614-617. PubMed ID: 28697907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual Interpretability in Computer-Assisted Diagnosis of Thyroid Nodules Using Ultrasound Images.
    Wei X; Zhu J; Zhang H; Gao H; Yu R; Liu Z; Zheng X; Gao M; Zhang S
    Med Sci Monit; 2020 Aug; 26():e927007. PubMed ID: 32798214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid nodules. Role of fine needle aspiration and intraoperative frozen section examination.
    Aguilar-Diosdado M; Contreras A; Gavilán I; Escobar-Jiménez L; Girón JA; Escribano JC; Beltrán M; García-Curiel A; Vázquez JM
    Acta Cytol; 1997; 41(3):677-82. PubMed ID: 9167682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.