These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 3297269)
1. Quantum thermodynamics approach to phosphorylation and heterotrophic growth yields. Tran VD Can J Microbiol; 1987 Apr; 33(4):290-9. PubMed ID: 3297269 [TBL] [Abstract][Full Text] [Related]
2. A new thermodynamically based correlation of chemotrophic biomass yields. Heijnen JJ Antonie Van Leeuwenhoek; 1991; 60(3-4):235-56. PubMed ID: 1807196 [TBL] [Abstract][Full Text] [Related]
3. Cooperation and competition in the evolution of ATP-producing pathways. Pfeiffer T; Schuster S; Bonhoeffer S Science; 2001 Apr; 292(5516):504-7. PubMed ID: 11283355 [TBL] [Abstract][Full Text] [Related]
4. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield. Zakhartsev M; Yang X; Reuss M; Pörtner HO J Therm Biol; 2015 Aug; 52():117-29. PubMed ID: 26267506 [TBL] [Abstract][Full Text] [Related]
5. Application of an enthalpy balance model of the relation between growth and respiration to temperature acclimation of Eucalyptus globulus seedlings. Macfarlane C; Adams MA; Hansen LD Proc Biol Sci; 2002 Jul; 269(1499):1499-507. PubMed ID: 12137581 [TBL] [Abstract][Full Text] [Related]
6. Growth of the yeast Saccharomyces cerevisiae on a non-fermentable substrate: control of energetic yield by the amount of mitochondria. Dejean L; Beauvoit B; Guérin B; Rigoulet M Biochim Biophys Acta; 2000 Feb; 1457(1-2):45-56. PubMed ID: 10692549 [TBL] [Abstract][Full Text] [Related]
7. Growth yield homeostasis in respiring yeast is due to a strict mitochondrial content adjustment. Devin A; Dejean L; Beauvoit B; Chevtzoff C; Avéret N; Bunoust O; Rigoulet M J Biol Chem; 2006 Sep; 281(37):26779-84. PubMed ID: 16849319 [TBL] [Abstract][Full Text] [Related]
8. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae. Thierie J J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654 [TBL] [Abstract][Full Text] [Related]
9. Available electron and energetic yields in fermentation processes. Erickson LE; Oner MD Ann N Y Acad Sci; 1983; 413():99-113. PubMed ID: 6367593 [TBL] [Abstract][Full Text] [Related]
10. A reevaluation of the thermodynamics of growth of Saccharomyces cerevisiae on glucose, ethanol, and acetic acid. Battley EH Can J Microbiol; 1995; 41(4-5):388-98. PubMed ID: 8590415 [TBL] [Abstract][Full Text] [Related]
11. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces. Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311 [TBL] [Abstract][Full Text] [Related]
13. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316 [TBL] [Abstract][Full Text] [Related]
14. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Stucki JW Eur J Biochem; 1980 Aug; 109(1):269-83. PubMed ID: 7408881 [TBL] [Abstract][Full Text] [Related]
15. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Zeng AP; Deckwer WD Biotechnol Prog; 1995; 11(1):71-9. PubMed ID: 7765990 [TBL] [Abstract][Full Text] [Related]
16. 31P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium. Kingsley-Hickman PB; Sako EY; Mohanakrishnan P; Robitaille PM; From AH; Foker JE; Uğurbil K Biochemistry; 1987 Nov; 26(23):7501-10. PubMed ID: 3427090 [TBL] [Abstract][Full Text] [Related]
17. Top-down control analysis of temperature effect on oxidative phosphorylation. Dufour S; Rousse N; Canioni P; Diolez P Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):743-51. PubMed ID: 8615765 [TBL] [Abstract][Full Text] [Related]
18. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Brand MD; Harper ME; Taylor HC Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):739-48. PubMed ID: 8489502 [TBL] [Abstract][Full Text] [Related]
19. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Gonzalez R; Andrews BA; Molitor J; Asenjo JA Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757 [TBL] [Abstract][Full Text] [Related]
20. Bioenergetic scaling: metabolic design and body-size constraints in mammals. Dobson GP; Headrick JP Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7317-21. PubMed ID: 7638188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]