BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32972973)

  • 21. Macrocyclization and Backbone Modification in RiPP Biosynthesis.
    Lee H; van der Donk WA
    Annu Rev Biochem; 2022 Jun; 91():269-294. PubMed ID: 35303785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current Advancements in Sactipeptide Natural Products.
    Chen Y; Wang J; Li G; Yang Y; Ding W
    Front Chem; 2021; 9():595991. PubMed ID: 34095082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Benjdia A; Balty C; Berteau O
    Front Chem; 2017; 5():87. PubMed ID: 29167789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sactipeptide Engineering by Probing the Substrate Tolerance of a Thioether-Bond-Forming Sactisynthase.
    Ali A; Happel D; Habermann J; Schoenfeld K; Macarrón Palacios A; Bitsch S; Englert S; Schneider H; Avrutina O; Fabritz S; Kolmar H
    Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202210883. PubMed ID: 36049110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous Biosynthesis, Modifications and Structural Characterization of Ruminococcin-A, a Lanthipeptide From the Gut Bacterium
    Ongey EL; Giessmann RT; Fons M; Rappsilber J; Adrian L; Neubauer P
    Front Microbiol; 2018; 9():1688. PubMed ID: 30093894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trapping a cross-linked lysine-tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB.
    Balo AR; Caruso A; Tao L; Tantillo DJ; Seyedsayamdost MR; Britt RD
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34001621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.
    Flühe L; Marahiel MA
    Curr Opin Chem Biol; 2013 Aug; 17(4):605-12. PubMed ID: 23891473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and distribution of the gene cluster encoding RumC, an anti-Clostridium perfringens bacteriocin produced in the gut.
    Pujol A; Crost EH; Simon G; Barbe V; Vallenet D; Gomez A; Fons M
    FEMS Microbiol Ecol; 2011 Nov; 78(2):405-15. PubMed ID: 22092178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition.
    Davis KM; Schramma KR; Hansen WA; Bacik JP; Khare SD; Seyedsayamdost MR; Ando N
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10420-10425. PubMed ID: 28893989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the sulfur to α-carbon thioether bridges in thurincin H.
    Mozolewska MA; Sieradzan AK; Niadzvedstki A; Czaplewski C; Liwo A; Krupa P
    J Biomol Struct Dyn; 2017 Oct; 35(13):2868-2879. PubMed ID: 27615507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Lanthipeptide-like N-Terminal Leader Region Guides Peptide Epimerization by Radical SAM Epimerases: Implications for RiPP Evolution.
    Fuchs SW; Lackner G; Morinaka BI; Morishita Y; Asai T; Riniker S; Piel J
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12330-3. PubMed ID: 27584723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micrococcin cysteine-to-thiazole conversion through transient interactions between the scaffolding protein TclI and the modification enzymes TclJ and TclN.
    Calvopina-Chavez DG; Bursey DM; Tseng Y-J; Patil LM; Bewley KD; Bennallack PR; McPhie JM; Wagstaff KB; Daley A; Miller SM; Moody JD; Price JC; Griffitts JS
    Appl Environ Microbiol; 2024 Jun; 90(6):e0024424. PubMed ID: 38780510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights.
    Goto Y; Li B; Claesen J; Shi Y; Bibb MJ; van der Donk WA
    PLoS Biol; 2010 Mar; 8(3):e1000339. PubMed ID: 20351769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ruminococcin C, a promising antibiotic produced by a human gut symbiont.
    Chiumento S; Roblin C; Kieffer-Jaquinod S; Tachon S; Leprètre C; Basset C; Aditiyarini D; Olleik H; Nicoletti C; Bornet O; Iranzo O; Maresca M; Hardré R; Fons M; Giardina T; Devillard E; Guerlesquin F; Couté Y; Atta M; Perrier J; Lafond M; Duarte V
    Sci Adv; 2019 Sep; 5(9):eaaw9969. PubMed ID: 31579822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thioether crosslinkages created by a radical SAM enzyme.
    Zhang Q; Yu Y
    Chembiochem; 2012 May; 13(8):1097-9. PubMed ID: 22556103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis.
    Chekan JR; Ongpipattanakul C; Nair SK
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24049-24055. PubMed ID: 31719203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Detection of the α-Carbon Radical Intermediate Formed by OspD: Mechanistic Insights into Radical
    Walls WG; Vagstad AL; Delridge T; Piel J; Broderick WE; Broderick JB
    J Am Chem Soc; 2024 Feb; 146(8):5550-5559. PubMed ID: 38364824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes.
    Jarrett JT
    J Biol Chem; 2015 Feb; 290(7):3972-9. PubMed ID: 25477512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron Paramagnetic Resonance Spectroscopic Identification of the Fe-S Clusters in the SPASM Domain-Containing Radical SAM Enzyme PqqE.
    Tao L; Zhu W; Klinman JP; Britt RD
    Biochemistry; 2019 Dec; 58(51):5173-5187. PubMed ID: 31769977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.