BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 32972997)

  • 1. Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data.
    Tanevski J; Nguyen T; Truong B; Karaiskos N; Ahsen ME; Zhang X; Shu C; Xu K; Liang X; Hu Y; Pham HV; Xiaomei L; Le TD; Tarca AL; Bhatti G; Romero R; Karathanasis N; Loher P; Chen Y; Ouyang Z; Mao D; Zhang Y; Zand M; Ruan J; Hafemeister C; Qiu P; Tran D; Nguyen T; Gabor A; Yu T; Guinney J; Glaab E; Krause R; Banda P; ; Stolovitzky G; Rajewsky N; Saez-Rodriguez J; Meyer P
    Life Sci Alliance; 2020 Nov; 3(11):. PubMed ID: 32972997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based prediction of spatial gene expression via generative linear mapping.
    Okochi Y; Sakaguchi S; Nakae K; Kondo T; Naoki H
    Nat Commun; 2021 Jun; 12(1):3731. PubMed ID: 34140477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial mapping of single cells in the
    Zand M; Ruan J
    F1000Res; 2020; 9():1014. PubMed ID: 33824719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data.
    Kim J; T Jakobsen S; Natarajan KN; Won KJ
    Nucleic Acids Res; 2021 Jan; 49(1):e1. PubMed ID: 33170214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features.
    Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J
    Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The winning methods for predicting cellular position in the DREAM single-cell transcriptomics challenge.
    Pham VVH; Li X; Truong B; Nguyen T; Liu L; Li J; Le TD
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of cell position using single-cell transcriptomic data: an iterative procedure.
    Alonso AM; Carrea A; Diambra L
    F1000Res; 2019; 8():1775. PubMed ID: 32399185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in
    Gupta S; Verma AK; Ahmad S
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33379262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments.
    Jackson CA; Castro DM; Saldi GA; Bonneau R; Gresham D
    Elife; 2020 Jan; 9():. PubMed ID: 31985403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping Cellular Coordinates through Advances in Spatial Transcriptomics Technology.
    Teves JM; Won KJ
    Mol Cells; 2020 Jul; 43(7):591-599. PubMed ID: 32507771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Analysis of Single-Cell RNA-Seq Data.
    Alessandrì L; Cordero F; Beccuti M; Arigoni M; Calogero RA
    Methods Mol Biol; 2021; 2284():289-301. PubMed ID: 33835449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring spatial and signaling relationships between cells from single cell transcriptomic data.
    Cang Z; Nie Q
    Nat Commun; 2020 Apr; 11(1):2084. PubMed ID: 32350282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA Tomography for Spatially Resolved Transcriptomics (Tomo-Seq).
    Holler K; Junker JP
    Methods Mol Biol; 2019; 1920():129-141. PubMed ID: 30737690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila.
    Mohr SE; Tattikota SG; Xu J; Zirin J; Hu Y; Perrimon N
    Genetics; 2021 Apr; 217(4):. PubMed ID: 33713129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MorphoSeq: Full Single-Cell Transcriptome Dynamics Up to Gastrulation in a Chordate.
    Sladitschek HL; Fiuza UM; Pavlinic D; Benes V; Hufnagel L; Neveu PA
    Cell; 2020 May; 181(4):922-935.e21. PubMed ID: 32315617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCMarker: Ab initio marker selection for single cell transcriptome profiling.
    Wang F; Liang S; Kumar T; Navin N; Chen K
    PLoS Comput Biol; 2019 Oct; 15(10):e1007445. PubMed ID: 31658262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics.
    Bravo González-Blas C; Quan XJ; Duran-Romaña R; Taskiran II; Koldere D; Davie K; Christiaens V; Makhzami S; Hulselmans G; de Waegeneer M; Mauduit D; Poovathingal S; Aibar S; Aerts S
    Mol Syst Biol; 2020 May; 16(5):e9438. PubMed ID: 32431014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Transcriptomics: Constructing a Single-Cell Resolution Transcriptome-Wide Expression Atlas.
    Achim K; Vergara HM; Pettit JB
    Methods Mol Biol; 2018; 1649():111-125. PubMed ID: 29130193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying cell populations with scRNASeq.
    Andrews TS; Hemberg M
    Mol Aspects Med; 2018 Feb; 59():114-122. PubMed ID: 28712804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell Transcriptome Profiling.
    Shapira G; Shomron N
    Methods Mol Biol; 2021; 2243():311-325. PubMed ID: 33606265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.