These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32973041)

  • 1. Identification of determinants of differential chromatin accessibility through a massively parallel genome-integrated reporter assay.
    Hammelman J; Krismer K; Banerjee B; Gifford DK; Sherwood RI
    Genome Res; 2020 Oct; 30(10):1468-1480. PubMed ID: 32973041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic and genomic regulatory elements reveal aspects of
    King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA
    Elife; 2020 Feb; 9():. PubMed ID: 32043966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility.
    Chen X; Yu B; Carriero N; Silva C; Bonneau R
    Nucleic Acids Res; 2017 May; 45(8):4315-4329. PubMed ID: 28334916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genome-integrated massively parallel reporter assay reveals DNA sequence determinants of cis-regulatory activity in neural cells.
    Maricque BB; Dougherty JD; Cohen BA
    Nucleic Acids Res; 2017 Feb; 45(4):e16. PubMed ID: 28204611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence and chromatin determinants of cell-type-specific transcription factor binding.
    Arvey A; Agius P; Noble WS; Leslie C
    Genome Res; 2012 Sep; 22(9):1723-34. PubMed ID: 22955984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEDEA: analysis of transcription factor binding motifs in accessible chromatin.
    Mariani L; Weinand K; Gisselbrecht SS; Bulyk ML
    Genome Res; 2020 May; 30(5):736-748. PubMed ID: 32424069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protein activity assay to measure global transcription factor activity reveals determinants of chromatin accessibility.
    Wei B; Jolma A; Sahu B; Orre LM; Zhong F; Zhu F; Kivioja T; Sur I; Lehtiö J; Taipale M; Taipale J
    Nat Biotechnol; 2018 Jul; 36(6):521-529. PubMed ID: 29786094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information content differentiates enhancers from silencers in mouse photoreceptors.
    Friedman RZ; Granas DM; Myers CA; Corbo JC; Cohen BA; White MA
    Elife; 2021 Sep; 10():. PubMed ID: 34486522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between chromatin state, regulator binding, and regulatory motifs in six human cell types.
    Ernst J; Kellis M
    Genome Res; 2013 Jul; 23(7):1142-54. PubMed ID: 23595227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development.
    Genga RMJ; Kernfeld EM; Parsi KM; Parsons TJ; Ziller MJ; Maehr R
    Cell Rep; 2019 Apr; 27(3):708-718.e10. PubMed ID: 30995470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells.
    Wong KC; Li Y; Peng C
    Bioinformatics; 2016 Feb; 32(3):321-4. PubMed ID: 26411866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs.
    Kim SW; Yoon SJ; Chuong E; Oyolu C; Wills AE; Gupta R; Baker J
    Dev Biol; 2011 Sep; 357(2):492-504. PubMed ID: 21741376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H3.3 contributes to chromatin accessibility and transcription factor binding at promoter-proximal regulatory elements in embryonic stem cells.
    Tafessu A; O'Hara R; Martire S; Dube AL; Saha P; Gant VU; Banaszynski LA
    Genome Biol; 2023 Feb; 24(1):25. PubMed ID: 36782260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression.
    Disatham J; Chauss D; Gheyas R; Brennan L; Blanco D; Daley L; Menko AS; Kantorow M
    Dev Biol; 2019 Sep; 453(1):86-104. PubMed ID: 31136738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling.
    Shashikant T; Khor JM; Ettensohn CA
    BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic methods in profiling DNA accessibility and factor localization.
    Klein DC; Hainer SJ
    Chromosome Res; 2020 Mar; 28(1):69-85. PubMed ID: 31776829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo.
    Schulz KN; Bondra ER; Moshe A; Villalta JE; Lieb JD; Kaplan T; McKay DJ; Harrison MM
    Genome Res; 2015 Nov; 25(11):1715-26. PubMed ID: 26335634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterisation of
    Simon CS; Downes DJ; Gosden ME; Telenius J; Higgs DR; Hughes JR; Costello I; Bikoff EK; Robertson EJ
    Development; 2017 Apr; 144(7):1249-1260. PubMed ID: 28174238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-marked chromatin and transcription factor co-binding shape the pioneering activity of Foxa2.
    Cernilogar FM; Hasenöder S; Wang Z; Scheibner K; Burtscher I; Sterr M; Smialowski P; Groh S; Evenroed IM; Gilfillan GD; Lickert H; Schotta G
    Nucleic Acids Res; 2019 Sep; 47(17):9069-9086. PubMed ID: 31350899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.