These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. A protein activity assay to measure global transcription factor activity reveals determinants of chromatin accessibility. Wei B; Jolma A; Sahu B; Orre LM; Zhong F; Zhu F; Kivioja T; Sur I; Lehtiö J; Taipale M; Taipale J Nat Biotechnol; 2018 Jul; 36(6):521-529. PubMed ID: 29786094 [TBL] [Abstract][Full Text] [Related]
8. Information content differentiates enhancers from silencers in mouse photoreceptors. Friedman RZ; Granas DM; Myers CA; Corbo JC; Cohen BA; White MA Elife; 2021 Sep; 10():. PubMed ID: 34486522 [TBL] [Abstract][Full Text] [Related]
9. Interplay between chromatin state, regulator binding, and regulatory motifs in six human cell types. Ernst J; Kellis M Genome Res; 2013 Jul; 23(7):1142-54. PubMed ID: 23595227 [TBL] [Abstract][Full Text] [Related]
10. Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development. Genga RMJ; Kernfeld EM; Parsi KM; Parsons TJ; Ziller MJ; Maehr R Cell Rep; 2019 Apr; 27(3):708-718.e10. PubMed ID: 30995470 [TBL] [Abstract][Full Text] [Related]
11. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells. Wong KC; Li Y; Peng C Bioinformatics; 2016 Feb; 32(3):321-4. PubMed ID: 26411866 [TBL] [Abstract][Full Text] [Related]
12. Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. Kim SW; Yoon SJ; Chuong E; Oyolu C; Wills AE; Gupta R; Baker J Dev Biol; 2011 Sep; 357(2):492-504. PubMed ID: 21741376 [TBL] [Abstract][Full Text] [Related]
13. H3.3 contributes to chromatin accessibility and transcription factor binding at promoter-proximal regulatory elements in embryonic stem cells. Tafessu A; O'Hara R; Martire S; Dube AL; Saha P; Gant VU; Banaszynski LA Genome Biol; 2023 Feb; 24(1):25. PubMed ID: 36782260 [TBL] [Abstract][Full Text] [Related]
14. Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression. Disatham J; Chauss D; Gheyas R; Brennan L; Blanco D; Daley L; Menko AS; Kantorow M Dev Biol; 2019 Sep; 453(1):86-104. PubMed ID: 31136738 [TBL] [Abstract][Full Text] [Related]
15. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling. Shashikant T; Khor JM; Ettensohn CA BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892 [TBL] [Abstract][Full Text] [Related]
16. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data. Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398 [TBL] [Abstract][Full Text] [Related]
17. Genomic methods in profiling DNA accessibility and factor localization. Klein DC; Hainer SJ Chromosome Res; 2020 Mar; 28(1):69-85. PubMed ID: 31776829 [TBL] [Abstract][Full Text] [Related]
18. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Schulz KN; Bondra ER; Moshe A; Villalta JE; Lieb JD; Kaplan T; McKay DJ; Harrison MM Genome Res; 2015 Nov; 25(11):1715-26. PubMed ID: 26335634 [TBL] [Abstract][Full Text] [Related]