BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32973084)

  • 1. Chromothripsis in Human Breast Cancer.
    Bolkestein M; Wong JKL; Thewes V; Körber V; Hlevnjak M; Elgaafary S; Schulze M; Kommoss FKF; Sinn HP; Anzeneder T; Hirsch S; Devens F; Schröter P; Höfer T; Schneeweiss A; Lichter P; Zapatka M; Ernst A
    Cancer Res; 2020 Nov; 80(22):4918-4931. PubMed ID: 32973084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The landscape of chromothripsis across adult cancer types.
    Voronina N; Wong JKL; Hübschmann D; Hlevnjak M; Uhrig S; Heilig CE; Horak P; Kreutzfeldt S; Mock A; Stenzinger A; Hutter B; Fröhlich M; Brors B; Jahn A; Klink B; Gieldon L; Sieverling L; Feuerbach L; Chudasama P; Beck K; Kroiss M; Heining C; Möhrmann L; Fischer A; Schröck E; Glimm H; Zapatka M; Lichter P; Fröhling S; Ernst A
    Nat Commun; 2020 May; 11(1):2320. PubMed ID: 32385320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERα-related chromothripsis enhances concordant gene transcription on chromosome 17q11.1-q24.1 in luminal breast cancer.
    Lin CL; Tan X; Chen M; Kusi M; Hung CN; Chou CW; Hsu YT; Wang CM; Kirma N; Chen CL; Lin CH; Lathrop KI; Elledge R; Kaklamani VG; Mitsuya K; Huang TH
    BMC Med Genomics; 2020 May; 13(1):69. PubMed ID: 32408897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer.
    Kloosterman WP; Hoogstraat M; Paling O; Tavakoli-Yaraki M; Renkens I; Vermaat JS; van Roosmalen MJ; van Lieshout S; Nijman IJ; Roessingh W; van 't Slot R; van de Belt J; Guryev V; Koudijs M; Voest E; Cuppen E
    Genome Biol; 2011 Oct; 12(10):R103. PubMed ID: 22014273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells.
    Hattori A; Okamura K; Terada Y; Tanaka R; Katoh-Fukui Y; Matsubara Y; Matsubara K; Kagami M; Horikawa R; Fukami M
    BMC Med Genomics; 2019 May; 12(1):77. PubMed ID: 31138192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis.
    Maciejowski J; Chatzipli A; Dananberg A; Chu K; Toufektchan E; Klimczak LJ; Gordenin DA; Campbell PJ; de Lange T
    Nat Genet; 2020 Sep; 52(9):884-890. PubMed ID: 32719516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis.
    Ratnaparkhe M; Hlevnjak M; Kolb T; Jauch A; Maass KK; Devens F; Rode A; Hovestadt V; Korshunov A; Pastorczak A; Mlynarski W; Sungalee S; Korbel J; Hoell J; Fischer U; Milde T; Kramm C; Nathrath M; Chrzanowska K; Tausch E; Takagi M; Taga T; Constantini S; Loeffen J; Meijerink J; Zielen S; Gohring G; Schlegelberger B; Maass E; Siebert R; Kunz J; Kulozik AE; Worst B; Jones DT; Pfister SM; Zapatka M; Lichter P; Ernst A
    Leukemia; 2017 Oct; 31(10):2048-2056. PubMed ID: 28196983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational mechanisms of amplifications revealed by analysis of clustered rearrangements in breast cancers.
    Głodzik D; Purdie C; Rye IH; Simpson PT; Staaf J; Span PN; Russnes HG; Nik-Zainal S
    Ann Oncol; 2018 Nov; 29(11):2223-2231. PubMed ID: 30252041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.
    Cortés-Ciriano I; Lee JJ; Xi R; Jain D; Jung YL; Yang L; Gordenin D; Klimczak LJ; Zhang CZ; Pellman DS; ; Park PJ;
    Nat Genet; 2020 Mar; 52(3):331-341. PubMed ID: 32025003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma.
    Cheng C; Zhou Y; Li H; Xiong T; Li S; Bi Y; Kong P; Wang F; Cui H; Li Y; Fang X; Yan T; Li Y; Wang J; Yang B; Zhang L; Jia Z; Song B; Hu X; Yang J; Qiu H; Zhang G; Liu J; Xu E; Shi R; Zhang Y; Liu H; He C; Zhao Z; Qian Y; Rong R; Han Z; Zhang Y; Luo W; Wang J; Peng S; Yang X; Li X; Li L; Fang H; Liu X; Ma L; Chen Y; Guo S; Chen X; Xi Y; Li G; Liang J; Yang X; Guo J; Jia J; Li Q; Cheng X; Zhan Q; Cui Y
    Am J Hum Genet; 2016 Feb; 98(2):256-74. PubMed ID: 26833333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromoanasynthesis is a common mechanism that leads to ERBB2 amplifications in a cohort of early stage HER2
    Vasmatzis G; Wang X; Smadbeck JB; Murphy SJ; Geiersbach KB; Johnson SH; Gaitatzes AG; Asmann YW; Kosari F; Borad MJ; Serie DJ; McLaughlin SA; Kachergus JM; Necela BM; Thompson EA
    BMC Cancer; 2018 Jul; 18(1):738. PubMed ID: 30005627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal catastrophe is a frequent event in clinically insignificant prostate cancer.
    Kovtun IV; Murphy SJ; Johnson SH; Cheville JC; Vasmatzis G
    Oncotarget; 2015 Oct; 6(30):29087-96. PubMed ID: 26337081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene fusions by chromothripsis of chromosome 5q in the VCaP prostate cancer cell line.
    Teles Alves I; Hiltemann S; Hartjes T; van der Spek P; Stubbs A; Trapman J; Jenster G
    Hum Genet; 2013 Jun; 132(6):709-13. PubMed ID: 23615946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer.
    Walsh T; Casadei S; Coats KH; Swisher E; Stray SM; Higgins J; Roach KC; Mandell J; Lee MK; Ciernikova S; Foretova L; Soucek P; King MC
    JAMA; 2006 Mar; 295(12):1379-88. PubMed ID: 16551709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remarkable similarities of chromosomal rearrangements between primary human breast cancers and matched distant metastases as revealed by whole-genome sequencing.
    Tang MH; Dahlgren M; Brueffer C; Tjitrowirjo T; Winter C; Chen Y; Olsson E; Wang K; Törngren T; Sjöström M; Grabau D; Bendahl PO; Rydén L; Niméus E; Saal LH; Borg Å; Gruvberger-Saal SK
    Oncotarget; 2015 Nov; 6(35):37169-84. PubMed ID: 26439695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic hotspots but few recurrent fusion genes in breast cancer.
    Fimereli D; Fumagalli D; Brown D; Gacquer D; Rothé F; Salgado R; Larsimont D; Sotiriou C; Detours V
    Genes Chromosomes Cancer; 2018 Jul; 57(7):331-338. PubMed ID: 29436103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational game changer: Chromothripsis and its emerging relevance to cancer.
    Luijten MNH; Lee JXT; Crasta KC
    Mutat Res Rev Mutat Res; 2018; 777():29-51. PubMed ID: 30115429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromothripsis is a frequent event and underlies typical genetic changes in early T-cell precursor lymphoblastic leukemia in adults.
    Arniani S; Pierini V; Pellanera F; Matteucci C; Di Giacomo D; Bardelli V; Quintini M; Mavridou E; Lema Fernandez AG; Nardelli C; Moretti M; Gorello P; Crescenzi B; Romoli S; Beacci D; Cerrano M; Fracchiolla N; Sica S; Forghieri F; Giglio F; Dargenio M; Elia L; La Starza R; Mecucci C
    Leukemia; 2022 Nov; 36(11):2577-2585. PubMed ID: 35974102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome-breakage genomic instability and chromothripsis in breast cancer.
    Przybytkowski E; Lenkiewicz E; Barrett MT; Klein K; Nabavi S; Greenwood CM; Basik M
    BMC Genomics; 2014 Jul; 15(1):579. PubMed ID: 25011954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When Genome Maintenance Goes Badly Awry.
    Kass EM; Moynahan ME; Jasin M
    Mol Cell; 2016 Jun; 62(5):777-87. PubMed ID: 27259208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.