BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32973096)

  • 1. Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries.
    Zhou J; Li S; Leung KK; O'Donovan B; Zou JY; DeRisi JL; Wells JA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25464-25475. PubMed ID: 32973096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling the Extended Cleavage Specificity of the House Dust Mite Protease Allergens Der p 1, Der p 3 and Der p 6 for the Prediction of New Cell Surface Protein Substrates.
    Jacquet A; Campisi V; Szpakowska M; Dumez ME; Galleni M; Chevigné A
    Int J Mol Sci; 2017 Jun; 18(7):. PubMed ID: 28654001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Profiling of the Cleavage Specificity and Human Substrates of Snake Venom Metalloprotease HF3 by Proteomic Identification of Cleavage Site Specificity (PICS) Using Proteome Derived Peptide Libraries and Terminal Amine Isotopic Labeling of Substrates (TAILS) N-Terminomics.
    Zelanis A; Oliveira AK; Prudova A; Huesgen PF; Tashima AK; Kizhakkedathu J; Overall CM; Serrano SMT
    J Proteome Res; 2019 Sep; 18(9):3419-3428. PubMed ID: 31337208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries.
    Barré O; Dufour A; Eckhard U; Kappelhoff R; Béliveau F; Leduc R; Overall CM
    PLoS One; 2014; 9(9):e105984. PubMed ID: 25211023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling of Protease Cleavage Sites by Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Chen CY; Mayer B; Schilling O
    Methods Mol Biol; 2017; 1574():197-204. PubMed ID: 28315252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening for protease substrate by polyvalent phage display.
    Sedlacek R; Chen E
    Comb Chem High Throughput Screen; 2005 Mar; 8(2):197-203. PubMed ID: 15777183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protease Activity Profiling via Programmable Phage Display of Comprehensive Proteome-Scale Peptide Libraries.
    Román-Meléndez GD; Venkataraman T; Monaco DR; Larman HB
    Cell Syst; 2020 Oct; 11(4):375-381.e4. PubMed ID: 33099407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling Sequence Specificity of Proteolytic Activities Using Proteome-Derived Peptide Libraries.
    Demir F; Kuppusamy M; Perrar A; Huesgen PF
    Methods Mol Biol; 2022; 2447():159-174. PubMed ID: 35583780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Biniossek ML; Niemer M; Maksimchuk K; Mayer B; Fuchs J; Huesgen PF; McCafferty DG; Turk B; Fritz G; Mayer J; Haecker G; Mach L; Schilling O
    Mol Cell Proteomics; 2016 Jul; 15(7):2515-24. PubMed ID: 27122596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites.
    Schilling O; Overall CM
    Nat Biotechnol; 2008 Jun; 26(6):685-94. PubMed ID: 18500335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A substrate-phage approach for investigating caspase specificity.
    Lien S; Pastor R; Sutherlin D; Lowman HB
    Protein J; 2004 Aug; 23(6):413-25. PubMed ID: 15517988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease Specificity Profiling in a Pipet Tip Using "Charge-Synchronized" Proteome-Derived Peptide Libraries.
    Nguyen MTN; Shema G; Zahedi RP; Verhelst SHL
    J Proteome Res; 2018 May; 17(5):1923-1933. PubMed ID: 29664642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.
    Song J; Wang Y; Li F; Akutsu T; Rawlings ND; Webb GI; Chou KC
    Brief Bioinform; 2019 Mar; 20(2):638-658. PubMed ID: 29897410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protease specificity determination by using cellular libraries of peptide substrates (CLiPS).
    Boulware KT; Daugherty PS
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7583-8. PubMed ID: 16672368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR; Pokornowski KA; McCann PJ; Weinheimer SP
    Virology; 1997 Sep; 236(2):338-47. PubMed ID: 9325241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a powerful in silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome.
    Ayyash M; Tamimi H; Ashhab Y
    BMC Bioinformatics; 2012 Jan; 13():14. PubMed ID: 22269041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development.
    Beck ZQ; Hervio L; Dawson PE; Elder JH; Madison EL
    Virology; 2000 Sep; 274(2):391-401. PubMed ID: 10964781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.
    Li F; Leier A; Liu Q; Wang Y; Xiang D; Akutsu T; Webb GI; Smith AI; Marquez-Lago T; Li J; Song J
    Genomics Proteomics Bioinformatics; 2020 Feb; 18(1):52-64. PubMed ID: 32413515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.