BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32973096)

  • 21. Multiplexed Protease Specificity Profiling Using Isobaric Labeling.
    Tucher J; Tholey A
    Methods Mol Biol; 2017; 1574():171-182. PubMed ID: 28315250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting serpin/protease interactions.
    Song J; Matthews AY; Reboul CF; Kaiserman D; Pike RN; Bird PI; Whisstock JC
    Methods Enzymol; 2011; 501():237-73. PubMed ID: 22078538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mixture-based peptide libraries for identifying protease cleavage motifs.
    Turk BE
    Methods Mol Biol; 2009; 539():79-91. PubMed ID: 19377969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics.
    Boulware KT; Jabaiah A; Daugherty PS
    Biotechnol Bioeng; 2010 Jun; 106(3):339-46. PubMed ID: 20148412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries.
    Smith MM; Shi L; Navre M
    J Biol Chem; 1995 Mar; 270(12):6440-9. PubMed ID: 7896777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry.
    Paes Leme AF; Escalante T; Pereira JG; Oliveira AK; Sanchez EF; Gutiérrez JM; Serrano SM; Fox JW
    J Proteomics; 2011 Apr; 74(4):401-10. PubMed ID: 21156218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of substrate specificity in NS3/4A serine protease by biased sequence search threading.
    Ozdemir Isik G; Ozer AN
    J Biomol Struct Dyn; 2017 Apr; 35(5):1102-1114. PubMed ID: 27122119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate phage as a tool to identify novel substrate sequences of proteases.
    Ohkubo S; Miyadera K; Sugimoto Y; Matsuo K; Wierzba K; Yamada Y
    Comb Chem High Throughput Screen; 2001 Nov; 4(7):573-83. PubMed ID: 11562260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel 2-DE-Based Proteomic Analysis to Identify Multiple Substrates for Specific Protease in Neuronal Cells.
    Kim C; Oh YJ
    Methods Mol Biol; 2017; 1598():229-245. PubMed ID: 28508364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. mRNA-display-based selections for proteins with desired functions: a protease-substrate case study.
    Valencia CA; Cotten SW; Dong B; Liu R
    Biotechnol Prog; 2008; 24(3):561-9. PubMed ID: 18471027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry.
    Schilling O; Huesgen PF; Barré O; Auf dem Keller U; Overall CM
    Nat Protoc; 2011 Jan; 6(1):111-20. PubMed ID: 21212787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate profiling of tobacco etch virus protease using a novel fluorescence-assisted whole-cell assay.
    Kostallas G; Löfdahl PÅ; Samuelson P
    PLoS One; 2011 Jan; 6(1):e16136. PubMed ID: 21267463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of Next Generation Sequencing (NGS) in Phage Displayed Peptide Selection to Support the Identification of Arsenic-Binding Motifs.
    Braun R; Schönberger N; Vinke S; Lederer F; Kalinowski J; Pollmann K
    Viruses; 2020 Nov; 12(12):. PubMed ID: 33261041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Definition and redesign of the extended substrate specificity of granzyme B.
    Harris JL; Peterson EP; Hudig D; Thornberry NA; Craik CS
    J Biol Chem; 1998 Oct; 273(42):27364-73. PubMed ID: 9765264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo selection of protease cleavage sites by using chimeric Sindbis virus libraries.
    Pacini L; Vitelli A; Filocamo G; Bartholomew L; Brunetti M; Tramontano A; Steinkühler C; Migliaccio G
    J Virol; 2000 Nov; 74(22):10563-70. PubMed ID: 11044100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Introductory Guide to Protease Sensitive Linker Design Using Matrix Metalloproteinase 13 as an Example.
    Hamm P; Meinel L; Driessen MD
    ACS Biomater Sci Eng; 2024 Jun; 10(6):3693-3706. PubMed ID: 38813796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methods for mapping protease specificity.
    Diamond SL
    Curr Opin Chem Biol; 2007 Feb; 11(1):46-51. PubMed ID: 17157549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A bead-based cleavage method for large-scale identification of protease substrates.
    Wang C; Ye M; Wei X; Bian Y; Cheng K; Zou H
    Sci Rep; 2016 Mar; 6():22645. PubMed ID: 26935269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of infectivity in phage display as a tool to determine the substrate specificity of proteases.
    Chaparro-Riggers JF; Breves R; Maurer KH; Bornscheuer U
    Chembiochem; 2006 Jun; 7(6):965-70. PubMed ID: 16642518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.