These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32973158)

  • 1. Copper catalysis at operando conditions-bridging the gap between single nanoparticle probing and catalyst-bed-averaging.
    Albinsson D; Boje A; Nilsson S; Tiburski C; Hellman A; Ström H; Langhammer C
    Nat Commun; 2020 Sep; 11(1):4832. PubMed ID: 32973158
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Albinsson D; Bartling S; Nilsson S; Ström H; Fritzsche J; Langhammer C
    Sci Adv; 2020 Jun; 6(25):eaba7678. PubMed ID: 32596464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Grain Boundary Sites for the Oxidation of Copper Catalysts during the CO Oxidation Reaction.
    Nilsson S; El Berch JN; Albinsson D; Fritzsche J; Mpourmpakis G; Langhammer C
    ACS Nano; 2023 Oct; 17(20):20284-20298. PubMed ID: 37796938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of copper phases, their reducibility and dispersion in doped-CuCl2/Al2O3 catalysts for ethylene oxychlorination.
    Muddada NB; Olsbye U; Leofanti G; Gianolio D; Bonino F; Bordiga S; Fuglerud T; Vidotto S; Marsella A; Lamberti C
    Dalton Trans; 2010 Sep; 39(36):8437-49. PubMed ID: 20717598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Nanospectroscopy of Platinum Catalyst Nanoparticle Sintering in a Mesoporous Alumina Support.
    Tabib Zadeh Adibi P; Pingel T; Olsson E; Grönbeck H; Langhammer C
    ACS Nano; 2016 May; 10(5):5063-9. PubMed ID: 27158734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Atom Dynamics in Chemical Reactions.
    Boyes ED; LaGrow AP; Ward MR; Mitchell RW; Gai PL
    Acc Chem Res; 2020 Feb; 53(2):390-399. PubMed ID: 32022555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the Pressure Gap in CO Oxidation.
    Blomberg S; Hejral U; Shipilin M; Albertin S; Karlsson H; Hulteberg C; Lömker P; Goodwin C; Degerman D; Gustafson J; Schlueter C; Nilsson A; Lundgren E; Amann P
    ACS Catal; 2021 Aug; 11(15):9128-9135. PubMed ID: 34476111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting CO Catalytic Oxidation Performance via Highly Dispersed Copper Atomic Clusters: Regulated Electron Interaction and Reaction Pathways.
    Chen D; Su Z; Si W; Qu Y; Zhao X; Liu H; Yang Y; Wang Y; Peng Y; Chen J; Li J
    Environ Sci Technol; 2023 Feb; 57(7):2928-2938. PubMed ID: 36752384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions.
    Hejral U; Franz D; Volkov S; Francoual S; Strempfer J; Stierle A
    Phys Rev Lett; 2018 Mar; 120(12):126101. PubMed ID: 29694082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Plasmonic Nanospectroscopy of the CO Oxidation Reaction over Single Pt Nanoparticles.
    Liu S; Arce AS; Nilsson S; Albinsson D; Hellberg L; Alekseeva S; Langhammer C
    ACS Nano; 2019 May; 13(5):6090-6100. PubMed ID: 31091069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation.
    Khan WU; Yu IKM; Sun Y; Polson MIJ; Golovko V; Lam FLY; Ogino I; Tsang DCW; Yip ACK
    Environ Pollut; 2021 Jun; 279():116899. PubMed ID: 33743438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles.
    Hoover NN; Auten BJ; Chandler BD
    J Phys Chem B; 2006 May; 110(17):8606-12. PubMed ID: 16640414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving single Cu nanoparticle oxidation and Kirkendall void formation with in situ plasmonic nanospectroscopy and electrodynamic simulations.
    Nilsson S; Albinsson D; Antosiewicz TJ; Fritzsche J; Langhammer C
    Nanoscale; 2019 Nov; 11(43):20725-20733. PubMed ID: 31650143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces.
    Zhang Z; Zandkarimi B; Alexandrova AN
    Acc Chem Res; 2020 Feb; 53(2):447-458. PubMed ID: 31977181
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Feijóo J; Yang Y; Fonseca Guzman MV; Vargas A; Chen C; Pollock CJ; Yang P
    J Am Chem Soc; 2023 Sep; 145(37):20208-20213. PubMed ID: 37677089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ studies of nanocatalysis.
    Zhang S; Nguyen L; Zhu Y; Zhan S; Tsung CK; Tao FF
    Acc Chem Res; 2013 Aug; 46(8):1731-9. PubMed ID: 23618394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.