BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32973201)

  • 1. Osteopontin regulates biomimetic calcium phosphate crystallization from disordered mineral layers covering apatite crystallites.
    Iline-Vul T; Nanda R; Mateos B; Hazan S; Matlahov I; Perelshtein I; Keinan-Adamsky K; Althoff-Ospelt G; Konrat R; Goobes G
    Sci Rep; 2020 Sep; 10(1):15722. PubMed ID: 32973201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.
    Von Euw S; Ajili W; Chan-Chang TH; Delices A; Laurent G; Babonneau F; Nassif N; Azaïs T
    Acta Biomater; 2017 Sep; 59():351-360. PubMed ID: 28690009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-mediated structuring of bone apatite.
    Wang Y; Von Euw S; Fernandes FM; Cassaignon S; Selmane M; Laurent G; Pehau-Arnaudet G; Coelho C; Bonhomme-Coury L; Giraud-Guille MM; Babonneau F; Azaïs T; Nassif N
    Nat Mater; 2013 Dec; 12(12):1144-53. PubMed ID: 24193662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How does osteocalcin lacking γ-glutamic groups affect biomimetic apatite formation and what can we say about its structure in mineral-bound form?
    Iline-Vul T; Kulpanovich A; Nadav-Tsubery M; Semionov A; Keinan-Adamsky K; Goobes G
    J Struct Biol; 2019 Aug; 207(2):104-114. PubMed ID: 31015050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient precursor strategy or very small biological apatite crystals?
    Grynpas MD; Omelon S
    Bone; 2007 Aug; 41(2):162-4. PubMed ID: 17537689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amelogenin control over apatite crystal growth is affected by the pH and degree of ionic saturation.
    Habelitz S; Denbesten PK; Marshall SJ; Marshall GW; Li W
    Orthod Craniofac Res; 2005 Nov; 8(4):232-8. PubMed ID: 16238603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of amorphous calcium phosphate to bone-like apatite.
    Lotsari A; Rajasekharan AK; Halvarsson M; Andersson M
    Nat Commun; 2018 Oct; 9(1):4170. PubMed ID: 30302020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes to the Disordered Phase and Apatite Crystallite Morphology during Mineralization by an Acidic Mineral Binding Peptide from Osteonectin.
    Iline-Vul T; Matlahov I; Grinblat J; Keinan-Adamsky K; Goobes G
    Biomacromolecules; 2015 Sep; 16(9):2656-63. PubMed ID: 26207448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices.
    Veis A; Dorvee JR
    Calcif Tissue Int; 2013 Oct; 93(4):307-15. PubMed ID: 23241924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of brushite and octacalcium phosphate in apatite formation.
    Johnsson MS; Nancollas GH
    Crit Rev Oral Biol Med; 1992; 3(1-2):61-82. PubMed ID: 1730071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and area-specific coating of fluoride-incorporated apatite layers by a laser-assisted biomimetic process for tooth surface functionalization.
    Joseph Nathanael A; Oyane A; Nakamura M; Mahanti M; Koga K; Shitomi K; Miyaji H
    Acta Biomater; 2018 Oct; 79():148-157. PubMed ID: 30149210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of apatite formation by vitronectin.
    Padrines M; Rohanizadeh R; Damiens C; Heymann D; Fortun Y
    Connect Tissue Res; 2000; 41(2):101-8. PubMed ID: 10992156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation.
    Boonrungsiman S; Gentleman E; Carzaniga R; Evans ND; McComb DW; Porter AE; Stevens MM
    Proc Natl Acad Sci U S A; 2012 Aug; 109(35):14170-5. PubMed ID: 22879397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of collagen-mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development.
    Chen L; Jacquet R; Lowder E; Landis WJ
    Bone; 2015 Feb; 71():7-16. PubMed ID: 25284158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic calcium phosphates: models for biological crystals?
    Péru L; Daculsi G
    Clin Mater; 1994; 15(4):267-72. PubMed ID: 10147170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation.
    Cantaert B; Beniash E; Meldrum FC
    Chemistry; 2013 Oct; 19(44):14918-24. PubMed ID: 24115275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective excitation with recoupling pulse schemes uncover properties of disordered mineral phases in bone-like apatite grown with bone proteins.
    Matlahov I; Kulpanovich A; Iline-Vul T; Nadav-Tsubery M; Goobes G
    Solid State Nucl Magn Reson; 2023 Apr; 124():101860. PubMed ID: 36913847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the amorphous layer in bone mineral and biomimetic apatite: A combined small- and wide-angle X-ray scattering analysis.
    Bertolotti F; Carmona FJ; Dal Sasso G; Ramírez-Rodríguez GB; Delgado-López JM; Pedersen JS; Ferri F; Masciocchi N; Guagliardi A
    Acta Biomater; 2021 Jan; 120():167-180. PubMed ID: 32438109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle-Attachment-Mediated and Matrix/Lattice-Guided Enamel Apatite Crystal Growth.
    Jokisaari JR; Wang C; Qiao Q; Hu X; Reed DA; Bleher R; Luan X; Klie RF; Diekwisch TGH
    ACS Nano; 2019 Mar; 13(3):3151-3161. PubMed ID: 30763075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution of poorly crystalline apatite crystals by osteoclasts determined on artificial thin-film apatite.
    Kim HM; Kim YS; Woo KM; Park SJ; Rey C; Kim Y; Kim JK; Ko JS
    J Biomed Mater Res; 2001 Aug; 56(2):250-6. PubMed ID: 11340596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.