BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32973277)

  • 21. Detection of cerebral NAD(+) by in vivo (1)H NMR spectroscopy.
    de Graaf RA; Behar KL
    NMR Biomed; 2014 Jul; 27(7):802-9. PubMed ID: 24831866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The NAD ratio redox paradox: why does too much reductive power cause oxidative stress?
    Teodoro JS; Rolo AP; Palmeira CM
    Toxicol Mech Methods; 2013 Jun; 23(5):297-302. PubMed ID: 23256455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology.
    Ishima T; Kimura N; Kobayashi M; Nagai R; Osaka H; Aizawa K
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.
    Zhao Y; Wang A; Zou Y; Su N; Loscalzo J; Yang Y
    Nat Protoc; 2016 Aug; 11(8):1345-59. PubMed ID: 27362337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosstalk of Signaling and Metabolism Mediated by the NAD(+)/NADH Redox State in Brain Cells.
    Winkler U; Hirrlinger J
    Neurochem Res; 2015 Dec; 40(12):2394-401. PubMed ID: 25876186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.
    Williamson DH; Lund P; Krebs HA
    Biochem J; 1967 May; 103(2):514-27. PubMed ID: 4291787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 28. Live cell imaging of cytosolic NADH/NAD
    Masia R; McCarty WJ; Lahmann C; Luther J; Chung RT; Yarmush ML; Yellen G
    Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G97-G108. PubMed ID: 29025729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic control by sirtuins and other enzymes that sense NAD
    Anderson KA; Madsen AS; Olsen CA; Hirschey MD
    Biochim Biophys Acta Bioenerg; 2017 Dec; 1858(12):991-998. PubMed ID: 28947253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain oxidative metabolism of the newborn dog: correlation between 31P NMR spectroscopy and pyridine nucleotide redox state.
    Mayevsky A; Nioka S; Subramanian VH; Chance B
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):201-7. PubMed ID: 3343295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolism of hyperpolarized
    Chen W; Sharma G; Jiang W; Maptue NR; Malloy CR; Sherry AD; Khemtong C
    NMR Biomed; 2019 Jun; 32(6):e4091. PubMed ID: 30968985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Therapeutic Concept of NAD Redox Balance for Cisplatin Nephrotoxicity.
    Oh GS; Kim HJ; Shen A; Lee SB; Yang SH; Shim H; Cho EY; Kwon KB; Kwak TH; So HS
    Biomed Res Int; 2016; 2016():4048390. PubMed ID: 26881219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cerebral redox state in cats during severe insulin induced hypoglycemia.
    Bryan RM; Jobsis FF
    Brain Res; 1983 Nov; 279(1-2):266-70. PubMed ID: 6357355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycolysis and epilepsy-induced changes in cerebrocortical NAD/NADH redox state.
    Dóra E
    J Neurochem; 1983 Dec; 41(6):1774-7. PubMed ID: 6644311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soluble adenylyl cyclase regulates the cytosolic NADH/NAD
    Chang JC; Go S; Gilglioni EH; Duijst S; Panneman DM; Rodenburg RJ; Li HL; Huang HL; Levin LR; Buck J; Verhoeven AJ; Oude Elferink RPJ
    Biochim Biophys Acta Bioenerg; 2021 Apr; 1862(4):148367. PubMed ID: 33412125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle.
    Barron JT; Sasse MF; Nair A
    Mol Cell Biochem; 2004 Jul; 262(1-2):91-9. PubMed ID: 15532713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism.
    Frederick DW; Davis JG; Dávila A; Agarwal B; Michan S; Puchowicz MA; Nakamaru-Ogiso E; Baur JA
    J Biol Chem; 2015 Jan; 290(3):1546-58. PubMed ID: 25411251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca²⁺ signals of astrocytes are modulated by the NAD⁺/NADH redox state.
    Requardt RP; Hirrlinger PG; Wilhelm F; Winkler U; Besser S; Hirrlinger J
    J Neurochem; 2012 Mar; 120(6):1014-25. PubMed ID: 22299833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular Compartmentation and the Redox/Nonredox Functions of NAD
    Kulkarni CA; Brookes PS
    Antioxid Redox Signal; 2019 Sep; 31(9):623-642. PubMed ID: 30784294
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.