These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32973286)

  • 1. Network Hamiltonian models reveal pathways to amyloid fibril formation.
    Yu Y; Grazioli G; Unhelkar MH; Martin RW; Butts CT
    Sci Rep; 2020 Sep; 10(1):15668. PubMed ID: 32973286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-Based Classification and Modeling of Amyloid Fibrils.
    Grazioli G; Yu Y; Unhelkar MH; Martin RW; Butts CT
    J Phys Chem B; 2019 Jul; 123(26):5452-5462. PubMed ID: 31095387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of water in protein aggregation and amyloid polymorphism.
    Thirumalai D; Reddy G; Straub JE
    Acc Chem Res; 2012 Jan; 45(1):83-92. PubMed ID: 21761818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structures of amyloid and prion fibrils: consensus versus controversy.
    Tycko R; Wickner RB
    Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of protein fibril formation: Methods and mechanisms.
    Kumar EK; Haque N; Prabhu NP
    Int J Biol Macromol; 2017 Jul; 100():3-10. PubMed ID: 27327908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid fibril formation by the chain B subunit of monellin occurs by a nucleation-dependent polymerization mechanism.
    Sabareesan AT; Udgaonkar JB
    Biochemistry; 2014 Feb; 53(7):1206-17. PubMed ID: 24495141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils.
    Singh J; Sabareesan AT; Mathew MK; Udgaonkar JB
    J Mol Biol; 2012 Oct; 423(2):217-31. PubMed ID: 22789566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directionality of growth and kinetics of branched fibril formation.
    Razbin M; Benetatos P; Mirabbaszadeh K
    J Chem Phys; 2020 Dec; 153(24):244101. PubMed ID: 33380088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Aggregation Mechanisms in Amyloids.
    Almeida ZL; Brito RMM
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32155822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates.
    Yagi-Utsumi M; Kato K
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of kinetic pathways in amyloid fibril formation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Sep; 131(11):111102. PubMed ID: 19778093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural, morphological, and functional diversity of amyloid oligomers.
    Breydo L; Uversky VN
    FEBS Lett; 2015 Sep; 589(19 Pt A):2640-8. PubMed ID: 26188543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early mechanisms of amyloid fibril nucleation in model and disease-related proteins.
    Morel B; Conejero-Lara F
    Biochim Biophys Acta Proteins Proteom; 2019 Nov; 1867(11):140264. PubMed ID: 31437584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation.
    Lorenzen N; Nielsen SB; Buell AK; Kaspersen JD; Arosio P; Vad BS; Paslawski W; Christiansen G; Valnickova-Hansen Z; Andreasen M; Enghild JJ; Pedersen JS; Dobson CM; Knowles TP; Otzen DE
    J Am Chem Soc; 2014 Mar; 136(10):3859-68. PubMed ID: 24527756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-Synuclein aggregation at low concentrations.
    Afitska K; Fucikova A; Shvadchak VV; Yushchenko DA
    Biochim Biophys Acta Proteins Proteom; 2019; 1867(7-8):701-709. PubMed ID: 31096048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature of amyloid-like glucagon fibrils.
    Pedersen JS
    J Diabetes Sci Technol; 2010 Nov; 4(6):1357-67. PubMed ID: 21129330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Anomalous Kinetics of Amyloidogenesis Suggest a Competition between Oligomers and Fibrils].
    Finkelstein AV; Dovidchenko NV; Galzitskaya OV
    Mol Biol (Mosk); 2018; 52(1):73-81. PubMed ID: 29512638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.