BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32973441)

  • 1. Arousal State-Dependent Alterations in Neural Activity in the Zebra Finch VTA/SNc.
    Yanagihara S; Ikebuchi M; Mori C; Tachibana RO; Okanoya K
    Front Neurosci; 2020; 14():897. PubMed ID: 32973441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological properties of zebra finch ventral tegmental area and substantia nigra pars compacta neurons.
    Gale SD; Perkel DJ
    J Neurophysiol; 2006 Nov; 96(5):2295-306. PubMed ID: 16870835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle.
    Lee RS; Steffensen SC; Henriksen SJ
    J Neurosci; 2001 Mar; 21(5):1757-66. PubMed ID: 11222665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arousal State-Dependent Alterations in VTA-GABAergic Neuronal Activity.
    Eban-Rothschild A; Borniger JC; Rothschild G; Giardino WJ; Morrow JG; de Lecea L
    eNeuro; 2020; 7(2):. PubMed ID: 32054621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micturition-related electrophysiological properties in the substantia nigra pars compacta and the ventral tegmental area in cats.
    Sakakibara R; Nakazawa K; Uchiyama T; Yoshiyama M; Yamanishi T; Hattori T
    Auton Neurosci; 2002 Nov; 102(1-2):30-8. PubMed ID: 12492133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of vocal initiation in the VTA/SNc of juvenile male zebra finches.
    Yanagihara S; Ikebuchi M; Mori C; Tachibana RO; Okanoya K
    Sci Rep; 2021 Nov; 11(1):22388. PubMed ID: 34789831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking.
    Monti JM; Jantos H
    Prog Brain Res; 2008; 172():625-46. PubMed ID: 18772053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of dopamine in the modulation of sleep and waking.
    Monti JM; Monti D
    Sleep Med Rev; 2007 Apr; 11(2):113-33. PubMed ID: 17275369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel basal ganglia pathway forms a loop linking a vocal learning circuit with its dopaminergic input.
    Gale SD; Person AL; Perkel DJ
    J Comp Neurol; 2008 Jun; 508(5):824-39. PubMed ID: 18398824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine Transporter Is a Master Regulator of Dopaminergic Neural Network Connectivity.
    Miller DR; Guenther DT; Maurer AP; Hansen CA; Zalesky A; Khoshbouei H
    J Neurosci; 2021 Jun; 41(25):5453-5470. PubMed ID: 33980544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of acute and chronic administration of the selective 5-HT2C receptor antagonist SB-243213 on midbrain dopamine neurons in the rat: an in vivo extracellular single cell study.
    Blackburn TP; Minabe Y; Middlemiss DN; Shirayama Y; Hashimoto K; Ashby CR
    Synapse; 2002 Dec; 46(3):129-39. PubMed ID: 12325040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of acute and repeated administration of amisulpride, a dopamine D2/D3 receptor antagonist, on the electrical activity of midbrain dopaminergic neurons.
    Di Giovanni G; Di Mascio M; Di Matteo V; Esposito E
    J Pharmacol Exp Ther; 1998 Oct; 287(1):51-7. PubMed ID: 9765321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential modulation by nicotine of substantia nigra versus ventral tegmental area dopamine neurons.
    Keath JR; Iacoviello MP; Barrett LE; Mansvelder HD; McGehee DS
    J Neurophysiol; 2007 Dec; 98(6):3388-96. PubMed ID: 17942622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context.
    Hara E; Kubikova L; Hessler NA; Jarvis ED
    Eur J Neurosci; 2007 Jun; 25(11):3406-16. PubMed ID: 17553009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesencephalic dopamine neurons are essential for modafinil-induced arousal.
    Yang YF; Dong H; Shen Y; Li L; Lazarus M; Qu WM; Huang ZL
    Br J Pharmacol; 2021 Dec; 178(24):4808-4825. PubMed ID: 34399438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors.
    Eban-Rothschild A; Rothschild G; Giardino WJ; Jones JR; de Lecea L
    Nat Neurosci; 2016 Oct; 19(10):1356-66. PubMed ID: 27595385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventral tegmental area and substantia nigra neural correlates of spatial learning.
    Martig AK; Mizumori SJ
    Learn Mem; 2011 Apr; 18(4):260-71. PubMed ID: 21447624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the acute and chronic administration of CP 96,345, a selective neurokinin1 receptor antagonist, on midbrain dopamine neurons in the rat: a single unit, extracellular recording study.
    Minabe Y; Emori K; Toor A; Stutzmann GE; Ashby CR
    Synapse; 1996 Jan; 22(1):35-45. PubMed ID: 8822476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute and repeated administration of the selective 5-HT(2A) receptor antagonist M100907 significantly alters the activity of midbrain dopamine neurons: an in vivo electrophysiological study.
    Minabe Y; Hashimoto K; Watanabe KI; Ashby CR
    Synapse; 2001 May; 40(2):102-12. PubMed ID: 11252021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute and chronic administration of the selective sigma1 receptor agonist SA4503 significantly alters the activity of midbrain dopamine neurons in rats: An in vivo electrophysiological study.
    Minabe Y; Matsuno K; Ashby CR
    Synapse; 1999 Aug; 33(2):129-40. PubMed ID: 10400891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.