These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32973830)

  • 21. Rooting depth as a key woody functional trait in savannas.
    Zhou Y; Wigley BJ; Case MF; Coetsee C; Staver AC
    New Phytol; 2020 Sep; 227(5):1350-1361. PubMed ID: 32306404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecological Stoichiometric Characteristics in Organs of
    Dong X; Zhang J; Xin Z; Huang Y; Han C; Li Y; Lu Q
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leaf-root-soil N:P stoichiometry of ephemeral plants in a temperate desert in Central Asia.
    Tao Y; Qiu D; Gong YM; Liu HL; Zhang J; Yin BF; Lu HY; Zhou XB; Zhang YM
    J Plant Res; 2022 Jan; 135(1):55-67. PubMed ID: 34762207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of vegetation type on the microbial characteristics of the fissure soil-plant systems in karst rocky desertification regions of SW China.
    Yan Y; Dai Q; Hu G; Jiao Q; Mei L; Fu W
    Sci Total Environ; 2020 Apr; 712():136543. PubMed ID: 32050385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions.
    Dawson TE
    Oecologia; 1993 Oct; 95(4):565-574. PubMed ID: 28313298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrologic regulation of plant rooting depth.
    Fan Y; Miguez-Macho G; Jobbágy EG; Jackson RB; Otero-Casal C
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10572-10577. PubMed ID: 28923923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.
    Paz H; Pineda-García F; Pinzón-Pérez LF
    Oecologia; 2015 Oct; 179(2):551-61. PubMed ID: 26048351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna.
    Le Roux X; Bariac T; Mariotti A
    Oecologia; 1995 Oct; 104(2):147-155. PubMed ID: 28307351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species.
    Keuper F; Dorrepaal E; van Bodegom PM; van Logtestijn R; Venhuizen G; van Hal J; Aerts R
    Glob Chang Biol; 2017 Oct; 23(10):4257-4266. PubMed ID: 28675586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscular mycorrhizae in karst soil than a native plant.
    Xia T; Wang Y; He Y; Wu C; Shen K; Tan Q; Kang L; Guo Y; Wu B; Han X
    PLoS One; 2020; 15(6):e0234410. PubMed ID: 32516341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal variations of plant water use in the karst desertification control.
    Cai L; Xiong K; Liu Z; Li Y; Fan B
    Sci Total Environ; 2023 Aug; 885():163778. PubMed ID: 37149184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response mechanism of growth and gypenosides content for
    Li D; Li G; Xi B; Gan J; Wen D; Cao F; Suo F; Li J; Ma B; Guo B
    Front Plant Sci; 2023; 14():1143745. PubMed ID: 37324724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impacts of Arctic Shrubs on Root Traits and Belowground Nutrient Cycles Across a Northern Alaskan Climate Gradient.
    Chen W; Tape KD; Euskirchen ES; Liang S; Matos A; Greenberg J; Fraterrigo JM
    Front Plant Sci; 2020; 11():588098. PubMed ID: 33362815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species.
    Bucci SJ; Scholz FG; Goldstein G; Meinzer FC; Arce ME
    Oecologia; 2009 Jul; 160(4):631-41. PubMed ID: 19330355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Main sources of soil phosphorus and their seasonal changes across different vegetation restoration stages in karst region of southwest China].
    Liu JQ; Liang Y; Xiao F; Han YQ; Hu CX; Wei LH; Duan M
    Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3313-3321. PubMed ID: 38511370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water use in four model tropical plant associations established in the lowlands of Costa Rica.
    Gutiérrez-Soto MV; Ewel JJ
    Rev Biol Trop; 2008 Dec; 56(4):1947-57. PubMed ID: 19419093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Species interactions at the level of fine roots in the field: influence of soil nutrient heterogeneity and plant size.
    Caldwell MM; Manwaring JH; Durham SL
    Oecologia; 1996 Jun; 106(4):440-447. PubMed ID: 28307441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal variations in water uptake and transpiration for plants in a karst critical zone in China.
    Behzad HM; Arif M; Duan S; Kavousi A; Cao M; Liu J; Jiang Y
    Sci Total Environ; 2023 Feb; 860():160424. PubMed ID: 36436637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disentangling water sources in a gypsum plant community. Gypsum crystallization water is a key source of water for shallow-rooted plants.
    de la Puente L; Pedro Ferrio J; Palacio S
    Ann Bot; 2022 Jan; 129(1):87-100. PubMed ID: 34406365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Grapevine water relations and rooting depth in karstic soils.
    Savi T; Petruzzellis F; Moretti E; Stenni B; Zini L; Martellos S; Lisjak K; Nardini A
    Sci Total Environ; 2019 Nov; 692():669-675. PubMed ID: 31539975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.